Bernoulli Polynomials and Bernoulli Numbers

Author(s):  
Victor Kac ◽  
Pokman Cheung
2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Taekyun Kim ◽  
Seog-Hoon Rim ◽  
Byungje Lee

By the properties ofp-adic invariant integral onℤp, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties ofp-adic invariant integral onℤp, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 675 ◽  
Author(s):  
Serkan Araci ◽  
Waseem Khan ◽  
Kottakkaran Nisar

We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials and Hermite-Bernoulli numbers attached to a Dirichlet character χ and investigate certain symmetric identities involving the polynomials, by mainly using the theory of p-adic integral on Z p . The results presented here, being very general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and numbers and some corresponding known symmetric identities.


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kohei Iwaki ◽  
Tatsuya Koike ◽  
Yumiko Takei

Abstract We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials. Communicated by: Youjin Zhang


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 847 ◽  
Author(s):  
Dmitry V. Dolgy ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Taekyun Kim

In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on Z p . In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 451 ◽  
Author(s):  
Dae Kim ◽  
Taekyun Kim ◽  
Cheon Ryoo ◽  
Yonghong Yao

The q-Bernoulli numbers and polynomials can be given by Witt’s type formulas as p-adic invariant integrals on Z p . We investigate some properties for them. In addition, we consider two variable q-Bernstein polynomials and operators and derive several properties for these polynomials and operators. Next, we study the evaluation problem for the double integrals on Z p of two variable q-Bernstein polynomials and show that they can be expressed in terms of the q-Bernoulli numbers and some special values of q-Bernoulli polynomials. This is generalized to the problem of evaluating any finite product of two variable q-Bernstein polynomials. Furthermore, some identities for q-Bernoulli numbers are found.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Luis M. Navas ◽  
Francisco J. Ruiz ◽  
Juan L. Varona

The Bernoulli polynomialsBkrestricted to[0,1)and extended by periodicity haventh sine and cosine Fourier coefficients of the formCk/nk. In general, the Fourier coefficients of any polynomial restricted to[0,1)are linear combinations of terms of the form1/nk. If we can make this linear combination explicit for a specific family of polynomials, then by uniqueness of Fourier series, we get a relation between the given family and the Bernoulli polynomials. Using this idea, we give new and simpler proofs of some known identities involving Bernoulli, Euler, and Legendre polynomials. The method can also be applied to certain families of Gegenbauer polynomials. As a result, we obtain new identities for Bernoulli polynomials and Bernoulli numbers.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Taekyun Kim

Kupershmidt and Tuenter have introduced reflection symmetries for theq-Bernoulli numbers and the Bernoulli polynomials in (2005), (2001), respectively. However, they have not dealt with congruence properties for these numbers entirely. Kupershmidt gave a quantization of the reflection symmetry for the classical Bernoulli polynomials. Tuenter derived a symmetry of power sum polynomials and the classical Bernoulli numbers. In this paper, we study the new symmetries of theq-Bernoulli numbers and polynomials, which are different from Kupershmidt's and Tuenter's results. By using our symmetries for theq-Bernoulli polynomials, we can obtain some interesting relationships betweenq-Bernoulli numbers and polynomials.


2021 ◽  
Vol 27 (4) ◽  
pp. 180-186
Author(s):  
André Pierro de Camargo ◽  
◽  
Giulliano Cogui de Oliveira Teruya ◽  

A problem posed by Lehmer in 1938 asks for simple closed formulae for the values of the even Bernoulli polynomials at rational arguments in terms of the Bernoulli numbers. We discuss this problem based on the Fourier expansion of the Bernoulli polynomials. We also give some necessary and sufficient conditions for ζ(2k + 1) be a rational multiple of π2k+1.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jitender Singh

A sequence of rational numbers as a generalization of the sequence of Bernoulli numbers is introduced. Sums of products involving the terms of this generalized sequence are then obtained using an application of Faà di Bruno's formula. These sums of products are analogous to the higher order Bernoulli numbers and are used to develop the closed form expressions for the sums of products involving the power sums Ψk(x,n):=∑d|n‍μ(d)dkSkx/d,  n∈ℤ+ which are defined via the Möbius function μ and the usual power sum Sk(x) of a real or complex variable x. The power sum Sk(x) is expressible in terms of the well-known Bernoulli polynomials by Sk(x):=(Bk+1(x+1)-Bk+1(1))/(k+1).


Sign in / Sign up

Export Citation Format

Share Document