Effect of Spatial Variation of Thermal Conductivity on Magnitude of Tensile Thermal Stresses in Brittle Materials Subjected to Convective Heating

Author(s):  
K. Satyamurthy ◽  
D. P. H. Hasselman ◽  
J. P. Singh ◽  
M. P. Kamat
Author(s):  
Ahmed E Aboueregal ◽  
Hamid M Sedighi

The present contribution aims to address a problem of thermoviscoelasticity for the analysis of the transition temperature and thermal stresses in an infinitely circular annular cylinder. The inner surface is traction-free and subjected to thermal shock heating, while the outer surface is thermally insulated and free of traction. In this work, in contrast to the various problems in which the thermal conductivity coefficient is considered to be fixed, this parameter is assumed to be variable depending on the temperature change. The problem is studied by presenting a new generalized thermoelastic model of thermal conductivity described by the Moore–Gibson–Thompson equation. The new model can be constructed by incorporating the relaxation time thermal model with the Green–Naghdi type III model. The Laplace transformation technique is used to obtain the exact expressions for the radial displacement, temperature and the distributions of thermal stresses. The effects of angular velocity, viscous parameter, and variance in thermal properties are also displayed to explain the comparisons of the physical fields.


Author(s):  
David Shaddock ◽  
Stanton Weaver ◽  
Ioannis Chasiotis ◽  
Binoy Shah ◽  
Dalong Zhong

The power density requirements continue to increase and the ability of thermal interface materials has not kept pace. Increasing effective thermal conductivity and reducing bondline thickness reduce thermal resistance. High thermal conductivity materials, such as solders, have been used as thermal interface materials. However, there is a limit to minimum bondline thickness in reducing resistance due to increased fatigue stress. A compliant thermal interface material is proposed that allows for thin solder bondlines using a compliant structure within the bondline to achieve thermal resistance <0.01 cm2C/W. The structure uses an array of nanosprings sandwiched between two plates of materials to match thermal expansion of their respective interface materials (ex. silicon and copper). Thin solder bondlines between these mating surfaces and high thermal conductivity of the nanospring layer results in thermal resistance of 0.01 cm2C/W. The compliance of the nanospring layer is two orders of magnitude more compliant than the solder layers so thermal stresses are carried by the nanosprings rather than the solder layers. The fabrication process and performance testing performed on the material is presented.


Author(s):  
J. J. Mecholsky ◽  
P. F. Becher ◽  
R. W. Rice ◽  
J. R. Spann ◽  
S. W. Freiman

2002 ◽  
Vol 18 (3) ◽  
pp. 202-207 ◽  
Author(s):  
S. Z. Shuja ◽  
B. S. Yilbas

2010 ◽  
Vol 123-125 ◽  
pp. 7-10
Author(s):  
Ho Sung Lee

In this study, thermal responses of advanced fiber/epoxy matrix composite materials are considered for spacecraft thermal design. These thermal responses are important, because the localized thermal behavior from applied heat loads can induce thermal stresses, which can lead to functional failure of the spacecraft system. Since most of polymer matrices exhibit relatively poor thermal conductivity, the composite materials have been widely considered only for structural application and little for thermal application. However, recently pitch-based high performance carbon fiber becomes available and this fiber shows high thermal conductivity. Because of this combination of low CTE and high thermal conductivity, continuous carbon fiber composites make them suitable for thermal management of spacecraft. The advanced composite material is composed of a continuous high modulus pitch based fiber (YS90A) and DGEBA epoxy resin(RS3232). It was demonstrated that advanced composite material satisfied thermal requirement for a lightweight thermal radiator for heat rejection of communication satellite.


Sign in / Sign up

Export Citation Format

Share Document