Advanced Conductive Composite Materials for Spacecraft Application

2010 ◽  
Vol 123-125 ◽  
pp. 7-10
Author(s):  
Ho Sung Lee

In this study, thermal responses of advanced fiber/epoxy matrix composite materials are considered for spacecraft thermal design. These thermal responses are important, because the localized thermal behavior from applied heat loads can induce thermal stresses, which can lead to functional failure of the spacecraft system. Since most of polymer matrices exhibit relatively poor thermal conductivity, the composite materials have been widely considered only for structural application and little for thermal application. However, recently pitch-based high performance carbon fiber becomes available and this fiber shows high thermal conductivity. Because of this combination of low CTE and high thermal conductivity, continuous carbon fiber composites make them suitable for thermal management of spacecraft. The advanced composite material is composed of a continuous high modulus pitch based fiber (YS90A) and DGEBA epoxy resin(RS3232). It was demonstrated that advanced composite material satisfied thermal requirement for a lightweight thermal radiator for heat rejection of communication satellite.

2009 ◽  
Vol 79-82 ◽  
pp. 1995-1998 ◽  
Author(s):  
Pei Hua Chen ◽  
Ping Jie Huang ◽  
Bo Ye ◽  
Guo Hou Li ◽  
Ze Kui Zhou

Composite materials have some obvious advantages such as high specific strength 、high specific modulus 、corrosion resistant 、abrasion resistant and so on, it is believed to be highly competitive compare to other materials. Advanced composite materials have been used more and more widely in defense industry, among them carbon fiber reinforced resin base composite material is most representative [1] ,there has great value for the study of carbon fiber composite materials. Eddy current is a nondestructive testing technology widely used on metal materials, the using of eddy current technology in aviation domain has a long history, but there is few reports on composite material with eddy current NDT. Experiments show that eddy current used on composite material is feasible, and the result is satisfactory. The thickness measurements of carbon fiber advanced composite materials have been done in two different ways.


Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


1989 ◽  
Vol 170 ◽  
Author(s):  
Benjamin S. Hsiao ◽  
J. H. Eric

AbstractTranscrystallization of semicrystalline polymers, such as PEEK, PEKK and PPS, in high performance composites has been investigated. It is found that PPDT aramid fiber and pitch-based carbon fiber induce a transcrystalline interphase in all three polymers, whereas in PAN-based carbon fiber and glass fiber systems, transcrystallization occurs only under specific circumstances. Epitaxy is used to explain the surface-induced transcrystalline interphase in the first case. In the latter case, transcrystallization is probably not due to epitaxy, but may be attributed to the thermal conductivity mismatch. Plasma treatment on the fiber surface showed a negligible effect on inducing transcrystallization, implying that surface-free energy was not important. A microdebonding test was adopted to evaluate the interfacial strength between the fiber and matrix. Our preliminary results did not reveal any effect on the fiber/matrix interfacial strength of transcrystallinity.


RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23355-23362 ◽  
Author(s):  
Tao Huang ◽  
Xiaoliang Zeng ◽  
Yimin Yao ◽  
Rong Sun ◽  
Fanling Meng ◽  
...  

In recent decades, significant attention has been focused on developing composite materials with high thermal conductivity utilizing h-BN, which has outstanding thermal conductivity.


2007 ◽  
Vol 21 (3) ◽  
pp. 460-467 ◽  
Author(s):  
Carlos A. Silva ◽  
Egidio (Ed) Marotta ◽  
Michael Schuller ◽  
Larry Peel ◽  
Mark O'Neill

2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


Sign in / Sign up

Export Citation Format

Share Document