The Monitoring of Large Scale Synoptic Features of the Ocean with Spaceborne Synthetic Aperture Radar

1981 ◽  
pp. 505-510 ◽  
Author(s):  
R. C. Beal
2021 ◽  
Vol 13 (17) ◽  
pp. 3490
Author(s):  
Shuran Luo ◽  
Guangcai Feng ◽  
Zhiqiang Xiong ◽  
Haiyan Wang ◽  
Yinggang Zhao ◽  
...  

Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) has been widely used for ground motion identification and monitoring over large-scale areas, due to its large spatial coverage and high accuracy. However, automatically locating and assessing the state of the ground motion from the massive Interferometric Synthetic Aperture Radar (InSAR) measurements is not easy. Utilizing the spatial-temporal characteristics of surface deformation on the basis of the Small Baseline Subsets InSAR (SBAS-InSAR) measurements, this study develops an improved method to locate potential unstable or dangerous regions, using the spatial velocity gradation and the temporal evolution trend of surface displacements in large-scale areas. This method is applied to identify the potential geohazard areas in a mountainous region in northwest China (Lajia Town in Qinghai province) using 73 and 71 Sentinel-1 images from the ascending and descending orbits, respectively, and an urban area (Dongguan City in Guangdong province) in south China using 32 Sentinel-1 images from the ascending orbit. In the mountainous area, 23 regions with potential landslide hazards have been identified, most of which have high to very high instability levels. In addition, the instability is the highest at the center and decreases gradually outward. In the urban area, 221 potential hazards have been identified. The moderate to high instability level areas account for the largest proportion, and they are concentrated in the farmland irrigation areas, and construction areas. The experiment results show that the improved method can quickly identify and evaluate geohazards on a large scale. It can be used for disaster prevention and mitigation.


1993 ◽  
Vol 39 (131) ◽  
pp. 119-132 ◽  
Author(s):  
K. C. Jezek ◽  
M. R. Drinkwater ◽  
J. P. Crawford ◽  
R. Bindschadler ◽  
R. Kwok

AbstractAnalyses of the first aircraft multi-frequency, Polarimetric synthetic aperture radar (SAR) data acquired over the southwestern Greenland ice sheet are presented. Data were collected on 31 August 1989 by the Jet Propulsion Laboratory SAR using the NASA DC-8 aircraft. Along with curvilinear patterns associated with large-scale morphologic features such as crevasses, lakes and streams, frequency and polarization dependencies are observed in the P-, L-and C-band image products. Model calculations that include firn grain-size and volumetric water content suggest that tonal variations in and between the images are attributable to large-scale variations in the snow-and ice-surface characteristics, especially snow wetness. In particular, systematic trends in back-scatter strength observed at C-band across regions of changing snow wetness are suggestive of a capability to delineate boundaries between snow facies. Ice lenses and ice pipes are the speculated cause for similar trends in P-band back-scatter. Finally, comparison between SEASAT SAR data collected in 1978 and these airborne data collected in 1989 indicate a remarkable stability of surface patterns associated with the locations of supraglacial lake and stream systems.


2017 ◽  
Vol 12 (3) ◽  
pp. 526-535 ◽  
Author(s):  
Ryo Natsuaki ◽  
◽  
Takuma Anahara ◽  
Tsuyoshi Kotoura ◽  
Yuudai Iwatsuka ◽  
...  

In this paper, we present experimental results of the disaster monitoring of harbor facilities using spaceborne synthetic aperture radar interferometry (InSAR). The Advanced Land Observing Satellite-2 (ALOS-2 or DAICHI-2), operated by the Japan Aerospace Exploration Agency (JAXA), carries the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2). PALSAR-2 can observe disaster areas day and night, in any weather, at a resolution of approximately 3 m. ALOS-2 PALSAR-2 has been used to measure large-scale ground deformation e.g., after earthquakes and volcanic eruptions. However, its robustness for smaller targets, such as harbor facilities, has not yet been substantiated. Here, we measured the uplift of a breakwater model made of concrete armor units, and confirmed the sensor accuracy to be better than 2 cm standard deviation. We also analyzed the damage to the Nagata and Suma ports in Kobe city, Hyogo prefecture, Japan hit by the 11th Typhoon in 2014, and detected the damaged area using interferometric coherence analysis.


2011 ◽  
Vol 128-129 ◽  
pp. 138-141
Author(s):  
Song Tao Han ◽  
Ge Shi Tang ◽  
Yong Fei Mao ◽  
Lue Chen ◽  
Mei Wang

Interferometric Synthetic Aperture Radar is one of the most important technologies for topographic mapping. The DEM quality of airborne InSAR system depends on both system hardware performance and data processing methods. To derive large scale topographic and thematic maps up to scale 1:50000 and 1:10000, the whole data processing methods were presented. The methods included SAR imaging, interferometric processing and cartographic processing. Special methods were induced to resolve the problems encountered in project applications. Results using X-band airborne InSAR system data showed validity of the algorithm.


2021 ◽  
Vol 13 (4) ◽  
pp. 795
Author(s):  
Xi Li ◽  
Li Yan ◽  
Lijun Lu ◽  
Guoman Huang ◽  
Zheng Zhao ◽  
...  

Large-scale land subsidence has threatened the safety of the Hebei Plain in China. For tens of thousands of square kilometers of the Hebei Plain, large-scale subsidence monitoring is still one of the most difficult problems to be solved. In this paper, we employed the small baseline subset (SBAS) and NSBAS technique to monitor the land subsidence in the Hebei Plain (45,000 km2). The 166 Sentinel-1A data of adjacent-track 40 and 142 collected from May 2017 to May 2019 were used to generate the average deformation velocity and deformation time-series. A novel data fusion flow for the generation of land subsidence velocity of adjacent-track is presented and tested, named as the fusion of time-series interferometric synthetic aperture radar (TS-InSAR) results of adjacent-track using synthetic aperture radar amplitude images (FTASA). A cross-comparison analysis between the two tracks results and two TS-InSAR results was carried out. In addition, the deformation results were validated by leveling measurements and benchmarks on bedrock results, reaching a precision 9 mm/year. Twenty-six typical subsidence bowls were identified in Handan, Xingtai, Shijiazhuang, Hengshui, Cangzhou, and Baoding. An average annual subsidence velocity over −79 mm/year was observed in Gaoyang County of Baoding City. Through the cause analysis of the typical subsidence bowls, the results showed that the shallow and deep groundwater funnels, three different land use types over the building construction, industrial area, and dense residential area, and faults had high spatial correlation related to land subsidence bowls.


Author(s):  
Olaniyi A. Ajadi ◽  
Jeremiah Barr ◽  
Sang-Zi Liang ◽  
Rogerio Ferreira ◽  
Siva P. Kumpatla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document