scholarly journals Adjacent-Track InSAR Processing for Large-Scale Land Subsidence Monitoring in the Hebei Plain

2021 ◽  
Vol 13 (4) ◽  
pp. 795
Author(s):  
Xi Li ◽  
Li Yan ◽  
Lijun Lu ◽  
Guoman Huang ◽  
Zheng Zhao ◽  
...  

Large-scale land subsidence has threatened the safety of the Hebei Plain in China. For tens of thousands of square kilometers of the Hebei Plain, large-scale subsidence monitoring is still one of the most difficult problems to be solved. In this paper, we employed the small baseline subset (SBAS) and NSBAS technique to monitor the land subsidence in the Hebei Plain (45,000 km2). The 166 Sentinel-1A data of adjacent-track 40 and 142 collected from May 2017 to May 2019 were used to generate the average deformation velocity and deformation time-series. A novel data fusion flow for the generation of land subsidence velocity of adjacent-track is presented and tested, named as the fusion of time-series interferometric synthetic aperture radar (TS-InSAR) results of adjacent-track using synthetic aperture radar amplitude images (FTASA). A cross-comparison analysis between the two tracks results and two TS-InSAR results was carried out. In addition, the deformation results were validated by leveling measurements and benchmarks on bedrock results, reaching a precision 9 mm/year. Twenty-six typical subsidence bowls were identified in Handan, Xingtai, Shijiazhuang, Hengshui, Cangzhou, and Baoding. An average annual subsidence velocity over −79 mm/year was observed in Gaoyang County of Baoding City. Through the cause analysis of the typical subsidence bowls, the results showed that the shallow and deep groundwater funnels, three different land use types over the building construction, industrial area, and dense residential area, and faults had high spatial correlation related to land subsidence bowls.

2021 ◽  
Vol 13 (7) ◽  
pp. 1256
Author(s):  
Haonan Jiang ◽  
Timo Balz ◽  
Francesca Cigna ◽  
Deodato Tapete

Wuhan is an important city in central China, with a rapid development that has led to increasingly serious land subsidence over the last decades. Most of the existing Interferometric Synthetic Aperture Radar (InSAR) subsidence monitoring studies in Wuhan are either short-term investigations—and thus can only detect this process within limited time periods—or combinations of different Synthetic Aperture Radar (SAR) datasets with temporal gaps in between. To overcome these constraints, we exploited nearly 300 high-resolution COSMO-SkyMed StripMap HIMAGE scenes acquired between 2012 and 2019 to monitor the long-term subsidence process affecting Wuhan and to reveal its spatiotemporal variations. The results from the Persistent Scatterer Interferometric SAR (PSInSAR) processing highlight several clearly observable subsidence zones. Three of them (i.e., Houhu, Xinrong, and Guanggu) are affected by serious subsidence rates and non-linear temporal behavior, and are investigated in this paper in more detail. The subsidence in Houhu is caused by soft soil consolidation and compression. Soil mechanics are therefore used to estimate when the subsidence is expected to finish and to calculate the degree of consolidation for each year. The COSMO-SkyMed PSInSAR results indicate that the area has entered the late stage of consolidation and compression and is gradually stabilizing. The subsidence curve found for the area around Xinrong shows that the construction of an underground tract of the subway Line 21 caused large-scale settlement in this area. The temporal granularity of the PSInSAR time series also allows precise detection of a rebound phase following a major flooding event in 2016. In the southern industrial park of Guanggu, newly detected subsidence was found. The combination of the subsidence curve with an optical time-series image analysis indicates that urban construction is the main trigger of deformation in this area. While this study unveils previously unknown characters of land subsidence in Wuhan and clarifies the relationship with the urban causative factors, it also proves the benefits of non-linear PSInSAR in the analysis of the temporal evolution of such processes in dynamic and expanding cities.


2018 ◽  
Vol 10 (11) ◽  
pp. 1741 ◽  
Author(s):  
Xiaying Wang ◽  
Qin Zhang ◽  
Chaoying Zhao ◽  
Feifei Qu ◽  
Juqing Zhang

As a result of rapid societal development and urbanization, the pumping of groundwater has gradually increased. Land subsidence has thus become a common geological disaster, which can result in huge economic losses. Interferometric synthetic aperture radar (InSAR), with its large-scale and high-accuracy monitoring characteristics, can attain information on Earth surface deformation using the interferometric phase between couples of SAR images acquired at different times. Time-series results for the ground surface are the key information required to understand the deformation pattern and further study the reason for the subsidence. However, in recent research, most methods for resolving time-series deformation—like the Berardino method—that use residuals in functional model solving and distinguish high-pass displacement and the atmospheric component by filtering do not generally work well and functional models focusing on prior information in the time-series solution process are not always available. In this paper, to solve the above problems, 34 Sentinel-1A descending mode scenes of Mexico City captured between 2015/04/13 and 2016/09/10 are used as experimental data. Firstly, a new functional model is provided to obtain the deformation time-series. The nonlinear deformation and atmospheric phase are combined as an unknown parameter and the method of singular value decomposition (SVD) is used to solve this variable. The nonlinear displacement and atmospheric phase are then separated by the singular spectrum analysis (SSA) method. Finally, the total land subsidence time-series is obtained by adding together the linear displacement and nonlinear displacement. Two typical methods and the proposed method were compared using both unit weights and adaptive weights. The experimental results show that the proposed method can obtain a more accurate time-series deformation result. Moreover, the different weights do not result in significant differences and the solved atmospheric and nonlinear phases have good consistency with the interferogram phase.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4425 ◽  
Author(s):  
Wu Zhu ◽  
Wen-Liang Li ◽  
Qin Zhang ◽  
Yi Yang ◽  
Yan Zhang ◽  
...  

Large-scale urbanization has brought about severe ground subsidence in Kunming (China), threatening the stability of urban infrastructure. Mapping of the spatiotemporal variations of ground deformation is urgently needed, along with summarization of the causes of the subsidence over Kunming with the purpose of disaster prevention and mitigation. In this study, for the first time, a multi-temporal interferometric synthetic aperture radar (InSAR) technique with L-band Advanced Land Observation Satellite (ALOS-1) and X-band Constellation of Small Satellites for Mediterranean basin Observation (COSMO-SkyMed) data was applied to Kunming to derive the time series deformation from 2007 to 2016. The annual deformation velocity revealed two severe subsiding regions in Kunming, with a maximum subsidence of 35 mm/y. The comparison of the deformation between InSAR and leveling showed root-mean-square error (RMSE) values of about 4.5 mm for the L-band and 3.7 mm for the X-band, indicating that our results were reliable. We also found that the L-band illustrated a larger amount of subsidence than the X-band in the tested regions. This difference was mainly caused by the different synthetic aperture radar (SAR)-acquired times and imaging geometries between the L- and X-band SAR images. The vertical time series deformation over two severe subsiding regions presented an approximate linear variation with time, where the cumulative subsidence reached 209 mm during the period of 2007–2016. In view of relevant analyses, we found that the subsidence in Kunming was the result of soft soil consolidation, building load, and groundwater extraction. Our results may provide scientific evidence regarding the sound management of urban construction to mitigate potential damage to infrastructure and the environment.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3181 ◽  
Author(s):  
Bo Hu ◽  
Junyu Chen ◽  
Xingfu Zhang

In recent years, the enormous losses caused by urban surface deformation have received more and more attention. Traditional geodetic techniques are point-based measurements, which have limitations in using traditional geodetic techniques to detect and monitor in areas where geological disasters occur. Therefore, we chose Interferometric Synthetic Aperture Radar (InSAR) technology to study the surface deformation in urban areas. In this research, we discovered the land subsidence phenomenon using InSAR and Global Navigation Satellite System (GNSS) technology. Two different kinds of time-series InSAR (TS-InSAR) methods: Small BAseline Subset (SBAS) and the Permanent Scatterer InSAR (PSI) process were executed on a dataset with 31 Sentinel-1A Synthetic Aperture Radar (SAR) images. We generated the surface deformation field of Shenzhen, China and Hong Kong Special Administrative Region (HKSAR). The time series of the 3d variation of the reference station network located in the HKSAR was generated at the same time. We compare the characteristics and advantages of PSI, SBAS, and GNSS in the study area. We mainly focus on the variety along the coastline area. From the results generated by SBAS and PSI techniques, we discovered the occurrence of significant subsidence phenomenon in the land reclamation area, especially in the metro construction area and the buildings with a shallow foundation located in the land reclamation area.


Sign in / Sign up

Export Citation Format

Share Document