Atypical Growth Hormone Releasing Peptides

1994 ◽  
pp. 203-222 ◽  
Author(s):  
C. Y. Bowers ◽  
K. Veeraragavan ◽  
K. Sethumadhavan
1994 ◽  
pp. 167-192 ◽  
Author(s):  
Richard F. Walker ◽  
Sei-Won Yang ◽  
Ryuji Masuda ◽  
Cheng-Shih Hu ◽  
Barry B. Bercu

2006 ◽  
Vol 50 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Ana Maria J. Lengyel

Growth hormone (GH)-releasing hormone and somatostatin modulate GH secretion. A third mechanism has been discovered in the last decade, involving the action of GH secretagogues. Ghrelin is a new acylated peptide produced mainly by the stomach, but also synthesized in the hypothalamus. This compound increases both GH release and food intake. The relative roles of hypothalamic and circulating ghrelin on GH secretion are still unknown. Endogenous ghrelin might amplify the basic pattern of GH secretion, optimizing somatotroph responsiveness to GH-releasing hormone. This peptide activates multiple interdependent intracellular pathways at the somatotroph, involving protein kinase C, protein kinase A and extracellular calcium systems. However, as ghrelin induces a greater release of GH in vivo, its main site of action is the hypothalamus. In this paper we review the available data on the discovery of ghrelin, the mechanisms of action and possible physiological roles of GH secretagogues and ghrelin on GH secretion, and, finally, the regulation of GH release in man after intravenous administration of these peptides.


2017 ◽  
Vol 11 ◽  
pp. 117954681769455 ◽  
Author(s):  
Jorge Berlanga-Acosta ◽  
Angel Abreu-Cruz ◽  
Diana García-del Barco Herrera ◽  
Yssel Mendoza-Marí ◽  
Arielis Rodríguez-Ulloa ◽  
...  

Background: Growth hormone-releasing peptides (GHRPs) constitute a group of small synthetic peptides that stimulate the growth hormone secretion and the downstream axis activity. Mounting evidences since the early 1980s delineated unexpected pharmacological cardioprotective and cytoprotective properties for the GHRPs. However, despite intense basic pharmacological research, alternatives to prevent cell and tissue demise before lethal insults have remained as an empty niche in the clinical armamentarium. Here, we have rigorously reviewed the investigational development of GHRPs and their clinical niching perspectives. Methodology: PubMed/MEDLINE databases, including original research and review articles, were explored. The search design was date escalated from 1980 and included articles in English only. Results and Conclusions: GHRPs bind to two different receptors (GHS-R1a and CD36), which redundantly or independently exert relevant biological effects. GHRPs’ binding to CD36 activates prosurvival pathways such as PI-3K/AKT1, thus reducing cellular death. Furthermore, GHRPs decrease reactive oxygen species (ROS) spillover, enhance the antioxidant defenses, and reduce inflammation. These cytoprotective abilities have been revealed in cardiac, neuronal, gastrointestinal, and hepatic cells, representing a comprehensive spectrum of protection of parenchymal organs. Antifibrotic effects have been attributed to some of the GHRPs by counteracting fibrogenic cytokines. In addition, GHRP family members have shown a potent myotropic effect by promoting anabolia and inhibiting catabolia. Finally, GHRPs exhibit a broad safety profile in preclinical and clinical settings. Despite these fragmented lines incite to envision multiple pharmacological uses for GHRPs, especially as a myocardial reperfusion damage-attenuating candidate, this family of “drugable” peptides awaits for a definitive clinical niche.


1996 ◽  
Vol 46 (4-5) ◽  
pp. 155-159 ◽  
Author(s):  
J. Argente ◽  
L.M. Garcia-Segura ◽  
J. Pozo ◽  
J.A. Chowen

1997 ◽  
Vol 136 (5) ◽  
pp. 445-460 ◽  
Author(s):  
E Ghigo ◽  
E Arvat ◽  
G Muccioli ◽  
F Camanni

Abstract Growth hormone-releasing peptides (GHRPs) are synthetic, non-natural peptides endowed with potent stimulatory effects on somatotrope secretion in animals and humans. They have no structural homology with GHRH and act via specific receptors present either at the pituitary or the hypothalamic level both in animals and in humans. The GHRP receptor has recently been cloned and, interestingly, it does not show sequence homology with other G-protein-coupled receptors known so far. This evidence strongly suggests the existence of a natural GHRP-like ligand which, however, has not yet been found. The mechanisms underlying the GHRP effect are still unclear. At present, several data favor the hypothesis that GHRPs could act by counteracting somatostatinergic activity both at the pituitary and the hypothalamic level and/or, at least partially, via a GHRH-mediated mechanism. However, the possibility that GHRPs act via an unknown hypothalamic factor (U factor) is still open. GHRP-6 was the first hexapeptide to be extensively studied in humans. More recently, a heptapeptide, GHRP-1, and two other hexapeptides, GHRP-2 and Hexarelin, have been synthesized and are now available for human studies. Moreover, non-peptidyl GHRP mimetics have been developed which act via GHRP receptors and their effects have been clearly demonstrated in animals and in humans in vivo. Among non-peptidyl GHRPs, MK-0677 seems the most interesting molecule. The GH-releasing activity of GHRPs is marked and dose-related after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHRPs is reproducible and undergoes partial desensitization, more during continuous infusion, less during intermittent administration; in fact, prolonged administration of GHRPs increases IGF-I levels both in animals and in humans. The GH-releasing effect of GHRPs does not depend on sex but undergoes age-related variations. It increases from birth to puberty, persists at a similar level in adulthood and decreases thereafter. By the sixth decade of life, the activity of GHRPs is reduced but it is still marked and higher than that of GHRH. The GH-releasing activity of GHRPs is synergistic with that of GHRH, is not affected by opioid receptor antagonists, such as naloxone, and is only blunted by inhibitory influences, including neurotransmitters, glucose, free fatty acids, glucocorticoids, recombinant human GH and even exogenous somatostatin, which are known to almost abolish the effect of GHRH. GHRPs maintain their GH-releasing effect in somatotrope hypersecretory states such as in acromegaly, anorexia nervosa and hyperthyroidism. On the other hand, their good GH-releasing activity has been shown in some but not in other somatotrope hyposecretory states. In fact, reduced GH responses after GHRP administration have been reported in idiopathic GH deficiency as well as in idiopathic short stature, in obesity and in hypothyroidism, while in patients with pituitary stalk disconnection or Cushing's syndrome the somatotrope responsiveness to GHRPs is almost absent. In short children an increase in height velocity has also been reported during chronic GHRP treatment. Thus, based on their marked GH-releasing effect even after oral administration, GHRPs offer their own clinical usefulness for treatment of some GH hyposecretory states. European Journal of Endocrinology 136 445–460


Sign in / Sign up

Export Citation Format

Share Document