Effects of Exogenous Application of 5-Aminolevulinic Acid in Crop Plants

Author(s):  
Ahmet Korkmaz
2020 ◽  
Vol 17 (4) ◽  
pp. e10R01
Author(s):  
Anupma Dahiya ◽  
Kavita Chahar ◽  
Satyavir S. Sindhu

The productivity of important grain crops wheat, rice and maize is adversely affected by various biotic and abiotic stresses. Weeds and phytopathogens are the major biotic stresses involved in biomass reduction and yield losses of these cereal crops. Various weeds compete with crop plants for natural resources viz. light, moisture, nutrients and space, and cause yield losses to agricultural produce. Weeds also increase harvesting costs and reduce quality of the farm produce. Weed management strategies include crop rotation, mechanical weeding or treatment with different herbicides. Although, sprays of different herbicides control various destructive weeds but their excessive use is environmentally unsafe and uneconomic. Indiscriminate use of these agrochemicals for weed control has resulted into considerable pollution of soil, groundwater and atmosphere. Therefore, effective biological weed management is an attractive approach for achieving the increased crop production to meet the food demands of the escalating global population. Many bacteria and fungi have been identified from the plant rhizospheres, which suppress the growth of weeds. The production of indole acetic acid, aminolevulinic acid, toxins and hydrogen cyanide has been correlated with the growth suppression of various weeds. Interestingly, inoculation with bioherbicides results in creation of biased rhizosphere leading to resource partitioning of nutrients towards growth stimulation of crop plants. Thus, inoculation of plants with bioherbicides has been found to increase germination percentage, seedling vigor, root and shoot growth, seed weight and increased grain, fodder and fruit yields. These environment-friendly biocontrol strategies for management of weeds are highly compatible with the sustainable agriculture.


2014 ◽  
Vol 33 (4) ◽  
pp. 745-750 ◽  
Author(s):  
Zahra Beyzaei ◽  
Rostislav A. Sherbakov ◽  
Natalia G. Averina

1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


Sign in / Sign up

Export Citation Format

Share Document