Bone Metastasis of Breast Cancer

Author(s):  
Takae M. Brewer ◽  
Richard L. Theriault ◽  
Naoto T. Ueno
2008 ◽  
Vol 68 (S 01) ◽  
Author(s):  
C Schem ◽  
DO Bauerschlag ◽  
J Weimer ◽  
M Zhang ◽  
W Jonat ◽  
...  

Author(s):  
LC Horn ◽  
A Meinel ◽  
C Pleul ◽  
C Leo ◽  
P Wuttke

2019 ◽  
Vol 19 (5) ◽  
pp. 667-676
Author(s):  
José R. Santin ◽  
Gislaine F. da Silva ◽  
Maria V.D. Pastor ◽  
Milena F. Broering ◽  
Roberta Nunes ◽  
...  

Background: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. Methods: In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. Results: The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. Conclusion: Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1377
Author(s):  
Konstantinos Venetis ◽  
Roberto Piciotti ◽  
Elham Sajjadi ◽  
Marco Invernizzi ◽  
Stefania Morganti ◽  
...  

Despite the remarkable advances in the diagnosis and treatment of breast cancer patients, the presence or development of metastasis remains an incurable condition. Bone is one of the most frequent sites of distant dissemination and negatively impacts on patient’s survival and overall frailty. The interplay between tumor cells and the bone microenvironment induces bone destruction and tumor progression. To date, the clinical management of bone metastatic breast cancer encompasses anti-tumor systemic therapies along with bone-targeting agents, aimed at slowing bone resorption to reduce the risk of skeletal-related events. However, their effect on patients’ survival remains controversial. Unraveling the biology that governs the interplay between breast neoplastic cells and bone tissue would provide means for the development of new therapeutic agents. This article outlines the state-of-the art in the characterization and targeting the bone metastasis in breast cancer, focusing on the major clinical and translational studies on this clinically relevant topic.


Sign in / Sign up

Export Citation Format

Share Document