Biological and Toxicological Evaluation of N-(4methyl-phenyl)-4-methylphthalimide on Bone Cancer in Mice

2019 ◽  
Vol 19 (5) ◽  
pp. 667-676
Author(s):  
José R. Santin ◽  
Gislaine F. da Silva ◽  
Maria V.D. Pastor ◽  
Milena F. Broering ◽  
Roberta Nunes ◽  
...  

Background: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. Methods: In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. Results: The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. Conclusion: Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.

2014 ◽  
Vol 1724 ◽  
Author(s):  
Benjamin Holmes ◽  
Wei Zhu ◽  
Lijie Grace Zhang

ABSTRACTBreast cancer (BrCa) is the second commonest cause of cancer-related deaths in women. The metastatic breast cancer exhibits a high affinity to bone, leading to debilitating skeletal complications associated with significant morbidity and poor prognosis. Traditional in vitro and in vivo BrCa bone metastasis models contain many inherent limitations with regards to controllability, reproducibility, and flexibility of design. Thus, the objective of this research is to use a 3D bioprinting system and nanomaterials to recreate a biomimetic and tunable bone model suitable for the effective simulation and study of metastatic BrCa invading and colonizing a bone environment. For this purpose, we designed and 3D printed a series of scaffolds, comprised of a bone microstructure and nano hydroxyapatites (nHA, inorganic nano components in bone). The size and geometry of the bone microstructure was varied with 250 and 150 µm pores, in repeating square and hexagon patterns, for a total of four different pore geometries. 3D bioprinted scaffolds were subsequently conjugated with nHA, using an acetylation chemical functionalization process and then characterized by scanning electron microscope (SEM). SEM imaging showed that our designed microfeatures were printable with the predesigned resolutions described above. Imaging further confirmed that acetylation effectively attached nHA to the surface of scaffolds and induced a nanoroughness. Metastatic BrCa cell 4 h adhesion and 1, 3 and 5 day proliferation were investigated in the bone model in vitro. The cell adhesion and proliferation results showed that all scaffolds are cytocompatible for BrCa cell growth; in particular the nHA scaffolds with small hexagonal pores had the highest cell density. Given this data, it can be stipulated that our 3D printed nHA scaffolds may make effective biomimetic environments for studying BrCa bone metastasis.


2014 ◽  
Vol 21 (2) ◽  
pp. 327-341 ◽  
Author(s):  
Faith Nutter ◽  
Ingunn Holen ◽  
Hannah K Brown ◽  
Simon S Cross ◽  
C Alyson Evans ◽  
...  

Advanced breast cancer is associated with the development of incurable bone metastasis. The two key processes involved, tumour cell homing to and subsequent colonisation of bone, remain to be clearly defined. Genetic studies have indicated that different genes facilitate homing and colonisation of secondary sites. To identify specific changes in gene and protein expression associated with bone-homing or colonisation, we have developed a novel bone-seeking clone of MDA-MB-231 breast cancer cells that exclusively forms tumours in long bones following i.v. injection in nude mice. Bone-homing cells were indistinguishable from parental cells in terms of growth ratein vitroand when grown subcutaneouslyin vivo. Only bone-homing ability differed between the lines; once established in bone, tumours from both lines displayed similar rates of progression and caused the same extent of lytic bone disease. By comparing the molecular profile of a panel of metastasis-associated genes, we have identified differential expression profiles associated with bone-homing or colonisation. Bone-homing cells had decreased expression of the cell adhesion molecule fibronectin and the migration and calcium signal binding protein S100A4, in addition to increased expression of interleukin 1B. Bone colonisation was associated with increased fibronectin and upregulation of molecules influencing signal transduction pathways and breakdown of extracellular matrix, including hRAS and matrix metalloproteinase 9. Our data support the hypothesis that during early stages of breast cancer bone metastasis, a specific set of genes are altered to facilitate bone-homing, and that disruption of these may be required for effective therapeutic targeting of this process.


Bone ◽  
2014 ◽  
Vol 66 ◽  
pp. 240-250 ◽  
Author(s):  
Marie-Therese Haider ◽  
Ingunn Holen ◽  
T. Neil Dear ◽  
Keith Hunter ◽  
Hannah K. Brown

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yingru Xu ◽  
Shuxia Zhang ◽  
Xinyi Liao ◽  
Man Li ◽  
Suwen Chen ◽  
...  

Abstract Background Breast cancer (BC) has a marked tendency to spread to the bone, resulting in significant skeletal complications and mortality. Recently, circular RNAs (circRNAs) have been reported to contribute to cancer initiation and progression. However, the function and mechanism of circRNAs in BC bone metastasis (BC-BM) remain largely unknown. Methods Bone-metastatic circRNAs were screened using circRNAs deep sequencing and validated using in situ hybridization in BC tissues with or without bone metastasis. The role of circIKBKB in inducing bone pre-metastatic niche formation and bone metastasis was determined using osteoclastogenesis, immunofluorescence and bone resorption pit assays. The mechanism underlying circIKBKB-mediated activation of NF-κB/bone remodeling factors signaling and EIF4A3-induced circIKBKB were investigated using RNA pull-down, luciferase reporter, chromatin isolation by RNA purification and enzyme-linked immunosorbent assays. Results We identified that a novel circRNA, circIKBKB, was upregulated significantly in bone-metastatic BC tissues. Overexpressing circIKBKB enhanced the capability of BC cells to induce formation of bone pre-metastatic niche dramatically by promoting osteoclastogenesis in vivo and in vitro. Mechanically, circIKBKB activated NF-κB pathway via promoting IKKβ-mediated IκBα phosphorylation, inhibiting IκBα feedback loop and facilitating NF-κB to the promoters of multiple bone remodeling factors. Moreover, EIF4A3, acted acting as a pre-mRNA splicing factor, promoted cyclization of circIKBKB by directly binding to the circIKBKB flanking region. Importantly, treatment with inhibitor eIF4A3-IN-2 reduced circIKBKB expression and inhibited breast cancer bone metastasis effectively. Conclusion We revealed a plausible mechanism for circIKBKB-mediated NF-κB hyperactivation in bone-metastatic BC, which might represent a potential strategy to treat breast cancer bone metastasis.


2014 ◽  
Vol 239 (4) ◽  
pp. 404-413 ◽  
Author(s):  
Justin J Jeffery ◽  
Katie Lux ◽  
John S Vogel ◽  
Wynetta D Herrera ◽  
Stephen Greco ◽  
...  

2021 ◽  
Author(s):  
Lin Zhang ◽  
Jingkun Qu ◽  
Yutao Qi ◽  
Yu-Wen Huang ◽  
Zhifen Zhou ◽  
...  

ABSTRACTBone metastasis is a frequent complication of breast cancer, occurring in about 50-70% of breast cancer patients with late-stage disease. The lack of effective therapy suggests that the precise molecular mechanisms underlying bone metastasis are still unclear. Enhancer of zeste homolog 2 (EZH2) is considered a breast cancer oncogene and its expression is correlated with metastasis of breast cancer, but its function in bone metastasis has not been well explored. Herein we report that EZH2 promotes osteolytic metastasis of breast cancer through regulating transforming growth factor beta (TGFβ) signaling, a key pathway in bone metastasis. Knocking down EZH2 decreases bone metastasis incidence and outgrowth in vivo. EZH2 induces cancer cell proliferation and osteoclast maturation, when breast cancer cells are co-cultured with osteoblasts and osteoclasts together in vitro. Mechanistically, EZH2 increases transcription of ITGB1, which encodes for integrin β1. Integrin β1 activates focal adhesion kinase (FAK), which phosphorylates TGFβ receptor type I (TGFβRI) at tyrosine 182, thus enhances the binding of TGFβRI to TGFβ receptor type II (TGFβRII), therefore activates Smad2 and increases parathyroid hormone-like hormone (PTHLH) expression. Clinically applicable FAK inhibitors but not EZH2 methyltransferase inhibitor effectively inhibits breast cancer bone metastasis in vivo. Overall, our data signify integrin β1-FAK as a new downstream effector of EZH2 in breast cancer cells, and EZH2-integrin β1-FAK axis cooperates with TGFβ signaling pathway to promote bone metastasis of breast cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Li ◽  
Guangyao Jiang ◽  
Xuantao Hu ◽  
Daishui Yang ◽  
Tingting Tan ◽  
...  

Background: Breast cancer bone metastasis and osteoporosis are both severe diseases that seriously threaten human health. These diseases are closely associated with osteolytic lesions. And osteoclasts are the key targets of this pathological process. Given the lack of effective preventive or treatment options against these diseases, the exploitation of new pharmacological agents is critically required.Method: We assessed the efficacy of punicalin on receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation, F-actin ring formation, gene expression, bone resorption, nuclear factor-κB (NF-κB) as well as on mitogen-activated protein kinase (MAPK) signaling pathways and molecular docking in vitro. The impact of punicalin on breast cancer-induced osteoclastogenesis, breast cancer cell proliferation, and apoptosis were examined. Transwell assays were also performed. Moreover, we evaluated in vivo effects of punicalin in postmenopausal osteoporosis models and breast cancer bone metastasis model by micro-CT scanning and histomorphometry.Results: Punicalin inhibited osteoclast formation, F-actin ring formation, bone resorption, as well as osteoclast-related gene expression by suppressing the NF-κB signaling pathway. In vitro, punicalin also suppressed the breast cancer-induced osteoclastogenesis, and proliferation, migration as well as invasion of MDA-MB-231 cells and dose-dependently promoted their apoptosis. In vivo, punicalin significantly suppressed breast cancer-induced osteolysis, breast cancer-associated bone metastasis, and ovariectomized (OVX)-mediated osteoporosis by repressing osteoclast and breast cancer cell.Conclusion: Punicalin is expected to offer a novel treatment for the prevention of osteolysis diseases, including osteoporosis and breast cancer-associated osteolysis.


2008 ◽  
Vol 68 (S 01) ◽  
Author(s):  
C Schem ◽  
DO Bauerschlag ◽  
J Weimer ◽  
M Zhang ◽  
W Jonat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document