smad pathway
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 179)

H-INDEX

43
(FIVE YEARS 7)

Author(s):  
Junhao Lin ◽  
Jie Shi ◽  
Xiang Min ◽  
Si Chen ◽  
Yunpeng Zhao ◽  
...  

Introduction: Sciatic nerve injury is a common injury of the nervous system. Stem cell-based therapies, drug-based therapies and rehabilitation physiotherapy therapies are currently available, but their limited therapeutic efficacy limits their use. Here, we aimed to explore a novel lentiviral-based gene therapeutic strategy and to elaborate its mechanism.Materials and Methods: Recombinant GDF11 protein was used for the in vitro treatment of dorsal root ganglion (DRG) cells. Lentivirus was used to construct a vector system for the in vivo expression of GDF11. The nerve conduction function was detected using action-evoked potentials at different time periods, and the regulatory effect of nerves on target organs was detected by weighing the gastrocnemius muscle. Immunofluorescence of NF200 and S100 was used to show the regeneration of the sciatic nerve, and myelin and Nissl staining were performed to observe the pathological features of the tissue. Western was used to validate signaling pathways. The expression of related genes was observed by qPCR and Western blotting, and cell apoptosis was detected by flow cytometry.Result: GDF11 promotes the axonal growth of DRG cells and inhibits DGR cell apoptosis in vitro. GDF11 acts by activating the Smad pathway. GDF11 promotes the recovery of damaged sciatic nerve function in rats, the regeneration of damaged sciatic nerves in rats, and myelin regeneration of damaged sciatic nerves in rats. GDF11 also exerts a protective effect on neuronal cells in rats.Conclusion: Based on the present study, we conclude that GDF11 promotes axonal growth and inhibits DRG cell apoptosis in vitro through the Smad pathway, and lentivirus-mediated GDF11 overexpression in vivo can promote the recovery of sciatic nerves after transection by promoting axonal growth and inhibiting neuronal apoptosis in the spinal cord.


2021 ◽  
Vol 17 (12) ◽  
pp. 2338-2350
Author(s):  
Tianming Chen ◽  
Changhao Zhu ◽  
Xing Wang ◽  
Yaozhen Pan ◽  
Bin Huang

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in many countries, which accounts for more than 80% of primary liver cancers. Better understanding of the biology of HCC and more therapeutic strategies are urgently needed to improve the current situation. Exosomes, lipid-bound particles derived from cells, have been revealed to play versatile roles in mediating communication between tumor and its microenvironment. Thus, exosomes could act as potential drug delivery systems in cancer treatment. This study aimed to investigate the effect of asiatic acid (AA)-loaded exosomes on the proliferation and migration of HCC cells and clarify the underlying mechanisms. HCC cells were treated with AA-loaded exosomes and cell vitality, migration and invasion were examined. Compared with free AA, AA-loaded exosomes significantly reduced cell vitality, migration, invasion and epithelial mesenchymal transition (EMT). And the inhibition was enhanced as AA concentration went up. Moreover, the expression of proteins involved in EMT and TGF-β/Smad pathway such as TGF-β1, Smad4 and Vimentin were decreased while E-cadherin was up-regulated. Collectively, these findings demonstrate that HCC derived exosomes display as potential drug delivery vehicles in HCC treatment. And AA-loaded exosomes might work by inhibiting EMT through inactivating TGF-β/Smad pathway.


Author(s):  
Chao Zhang ◽  
Xin Zhang ◽  
Ran Xu ◽  
Bin Huang ◽  
An-Jing Chen ◽  
...  

This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s13046-021-02219-8.


Author(s):  
Abdulaziz M. Alzahrani ◽  
Mai A. Alim A. Sattar Ahmad ◽  
Basma T. Alharthy

Dyslipidemia is usually observed in both types of diabetes and, particularly, “atherogenic dyslipidemic triad” is strongly linked to a higher risk of adverse cardiovascular outcome. On the other hand, bone morphogenetic proteins (BMP) are a group of wide variety of proteins which were found overexpressed and implicated in contribution and acceleration of atherosclerotic calcification. So, the present study aimed to assess effect of DMH1, a selective BMP inhibitor, in a rat model of diabetic-induced dyslipidemia. Methods: STZ-induced diabetes in Wistar rats was used as a model to assess the antihyperlipidemic effect of DMH1(5mg/kg) for a period of 8 weeks. Rats were divided intonormal control (C=10), diabetic control (DC=10), diabetic+vehicle (DV=10) and diabetic DMH1-treated rats (DT=10). Fasting blood glucose (FBG) level was measured on weekly bases. Then, at the end of the experiment, rats were anesthetized and blood samples were collected for the determination of total cholesterol (TC), triglyceride (TG), LDL and HDL levels using the appropriate ELISA assay. Results: FBG levels for all diabetic groups were significantly high, during the experiment period, compared to the control (P< 0.001). While dyslipidemia was remarkable in the diabetic non-treated groups, DMH1 treatment showed a significant decrease in TC (P< 0.001), TG (P< 0.05) and LDL levels (P< 0.001) compared to the non-treated groups (DC & DV). Concurrently, HDL levels for DT group were significantly increased compared to DC or DV groups (P< 0.01). Conclusion: The present experiment showed that DMH1 possessed encouraging activityagainst dyslipidemia in STZ-induced diabetic rats. Our results are promoting for more interest and investigation regarding antihyperlipidemic effect of DMH1 and BMP/Smad pathway in further experimental studies.


Author(s):  
Laura Boucai ◽  
Venkatraman Seshan ◽  
Michelle Williams ◽  
Jeffrey A Knauf ◽  
Mahesh Saqcena ◽  
...  

Abstract Context The BRAFV600E mutation has been associated with more advanced clinical stage in papillary thyroid cancer (PTC) and decreased responsiveness to radioiodine (RAI). However, some BRAF mutant PTCs respond to RAI and have an indolent clinical behavior suggesting the presence of different subtypes of BRAF mutant tumors with distinct prognosis. Objective To characterize the molecular and clinical features of 2 subtypes of BRAF-mutant PTCs defined by their degree of expression of iodine metabolism genes. Design 227 BRAF-mutant PTCs from the Cancer Genome Atlas Thyroid Cancer study were divided into 2 subgroups based on their thyroid differentiation score (TDS): BRAF-TDShi and BRAF-TDSlo. Demographic, clinico-pathological, and molecular characteristics of the 2 subgroups were compared. Results Compared to BRAF-TDShi tumors (17%), BRAF-TDSlo tumors (83%) were more frequent in blacks and Hispanics (6% vs 0%, P = 0.035 and 12% vs 0%, P = 0.05, respectively), they were larger (2.95 ± 1.7 vs 2.03 ± 1.5, P = 0.002), with more tumor-involved lymph nodes (3.9 ± 5.8 vs 2.0 ± 4.2, P = 0.042), and a higher frequency of distant metastases (3% vs 0%, P = 0.043). Gene set enrichment analysis showed positive enrichment for RAS signatures in the BRAF-TDShi cohort, with corresponding reciprocal changes in the BRAF-TDSlo group. Several microRNAs (miRs) targeting nodes in the transforming growth factor β (TGFβ)-SMAD pathway, miR-204, miR-205, and miR-144, were overexpressed in the BRAF-TDShi group. In the subset with follow-up data, BRAF-TDShi tumors had higher complete responses to therapy (94% vs 57%, P &lt; 0.01) than BRAF-TDSlo tumors. Conclusion Enrichment for RAS signatures, key genes involved in cell polarity and specific miRs targeting the TGFβ-SMAD pathway define 2 subtypes of BRAF-mutant PTCs with distinct clinical characteristics and prognosis.


2021 ◽  
Author(s):  
Zhenhuan Ma ◽  
Zhen Li ◽  
Lei Zou ◽  
Guojian Li ◽  
Yan Bao ◽  
...  

Abstract Backgroud The aim of this study is to examine miRNA profiling and miR-1285-3p participates in 125I seed irradiation of gastric carcinoma cell via the regulation of epithelial mesenchymal transition (EMT). Methods An in vitro I-125 seed irradiation model was established, followed by the small RNA-Sequencing to investigate the full spectrum of miRNAs that are response to I-125 seed implantation. Validation was performed with quantitative real time PCR (qRT-PCR). qRT-PCR was also employed to measure miR-1285-3p and EMT-related mRNAs expression. Western blotting assay was performed to test the expression of EMT-related proteins. Luciferase reporter assay was conducted to confirm the direct targeting of SMAD2/3 and SMAD4 by miR-1285-3p.Results A total of 1034 miRNAs were initially detected. Of these, 11 miRNAs were significantly differentially expressed between I-125 seed irradiation and control groups. Six miRNAs (hsa-miR-127-3p, hsa-miR-1285-3p, hsa-miR-296-5p, hsa-miR-421, hsa-miR-495-3p, and hsa-miR-548am-3p) were up regulation and five miRNAs (hsa-miR-17-5p, hsa-miR-193b-5p, hsa-miR-23b-5p, hsa-miR-483-5p, hsa-miR-92a-1-5p) were down regulation between I-125 seed irradiation treatment and control groups. EMT is involved in gastric cancer cells treatment with I-125 seed implantation, and downregulation of miR-1285-3p can repress EMT through its targeting of SMAD pathway, which make miR-1285-3p a novel target of I-125 therapeutic intervention for human gastric cancer.Conclusions This study revealed that miR-1285-3p inhibited EMT by targeting SMAD pathway in 125I seed irradiation of gastric carcinoma.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2008-2008
Author(s):  
Alessia Pagani ◽  
Mariateresa Pettinato ◽  
Alessandro Dulja ◽  
Silvia Colucci ◽  
Mariam Aghajan ◽  
...  

Abstract The BMP-SMAD pathway is activated when a dimeric ligand (BMP) interacts with a dimeric serine threonine kinase receptor (BMPRII) and triggers the activation of a dimeric BMP type I receptor (BMPRI). Catalytically active BMPRIs phosphorylate SMAD1/5/8 that, upon SMAD4 binding, translocate to the nucleus to regulate the expression of BMP target genes, including hepcidin. Hepcidin is the main regulator of iron homeostasis that controls body iron levels by binding and blocking the sole iron exporter ferroportin. In agreement, hepcidin expression is homeostatically activated by serum and liver iron, and its deficiency is a common hallmark of Hereditary Hemochromatosis (HH) and the major cause of iron overload in beta thalassemia. The components of the BMP-SMAD pathway relevant for hepcidin regulation are ALK2 and ALK3 (BMPRI); BMPR2 and ACVR2A (BMPRII), BMP2 and BMP6 (BMP ligands). Recently, we have identified the immunophilin FKBP12 as an inhibitor of hepcidin and demonstrated that FKBP12 binds ALK2 to avoid ligand-independent activation of the BMP-SMAD pathway. To investigate the mechanism of BMP-SMAD pathway and hepcidin regulation by FKBP12, we performed in vitro, ex vivo and in vivo studies. We found that FKBP12 sequestration by the immunosuppressive drug Tacrolimus (TAC) stabilizes ALK2-ALK2 homodimers and ALK2-ALK3 heterodimers in a transfected human hepatoma cell line. In addition, it increases the interaction of ALK2 with ACVR2A and BMPR2. To investigate the role of FKBP12 on BMP-SMAD signaling, BMPRI and II were silenced in murine primary hepatocytes. Despite FKBP12 co-immunoprecipitates only with ALK2, silencing of Alk2 and Alk3 completely blunts TAC-mediated BMP-SMAD pathway activation, suggesting that FKBP12 functionally interacts also with ALK3. Acvr2a silencing impairs TAC-dependent hepcidin upregulation, whereas Bmpr2 silencing does not. As expected, Fkbp12 silencing abrogates hepcidin upregulation by TAC, confirming the main role of this immunophilin in hepcidin regulation. In vivo, TAC treatment upregulates hepcidin in wild type and HH mouse models, but surprisingly, Fkbp12 mRNA downregulation by ASOs does not. Interestingly, Fkbp 2, 4 and 8 are highly expressed in murine hepatocytes and, according to literature data, are able to bind to TAC. Of note, Fkbp12 is the least expressed immunophilin in murine primary hepatocytes. To further investigate the FKBPs involved in TAC-dependent hepcidin regulation, Fkbp2, 4 and 8 were knockdown in murine primary HCs that were then treated with TAC. The TAC effect is preserved in siFkbp2- and siFkbp4-derived HCs, but abolished when Fkbp8 was downregulated. Overall these data suggest that: 1) FKBP12 regulates BMP-SMAD signaling by favoring ALK2-ALK3 homo and heterodimerization, and interaction with BMPRII in the absence of ligands; 2) TAC-mediated hepcidin upregulation is dependent upon ALK2, ALK3, ACVR2A, FKBP12 and FKBP8. 3) In vivo, TAC treatment upregulates hepcidin whereas Fkbp12 silencing does not, suggesting the existence of redundancy between the different FKBPs. Further studies are needed to dissect the role of FKBP8 in BMP-SMAD pathway and hepcidin regulation. Disclosures Aghajan: Ionis Pharmaceuticals, Inc.: Current Employment. Muckenthaler: Silence Therapeutics: Research Funding. Guo: Ionis Pharmaceuticals, Inc.: Current Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 626-626
Author(s):  
Bing Li ◽  
Wenbin An ◽  
Hua Wang ◽  
Aishwarya Krishnan ◽  
Shoron Mowla ◽  
...  

Abstract Leukemic transformation (LT) after an antecedent myeloproliferative neoplasm (MPN) carries a dismal prognosis. As such, there is a pressing need for new mechanistic insights into LT as well as novel therapeutic approaches. Mutational inactivation of TP53 is the most common somatic mutation in LT. However, the impact of TP53 allelic state on the ability to potentiate LT, as well as the pathways involved in this process, have largely remained unresolved. To investigate the role of Tp53 alterations in LT, we generated an allelic series of mouse models with Jak2V617F/+ combined with conditional Tp53 knockout and point mutant alleles (all crossed to Rosa-CreERT2); Jak2V617F/+(J VF) , Jak2V617F/+-Tp53fl/+(J VFP +/-), Jak2V617F/+-Tp53fl/fl (J VFP -/-), Jak2V617F/+-Tp53R172H/+(J VFP R172H/+), Jak2V617F/+-Tp53R172H/fl (J VFP R172H/-). After tamoxifen-induced recombination, mice transplanted with J VF, J VFP +/- and J VFP R172H/+ cells developed an MPN phenotype, whereas all the recipients of J VFP -/- and J VFP R172H/- bone marrow initially developed an MPN phenotype followed by transformation to acute leukemia with significantly impaired survival, and changes in blood counts and organ weights, compared to other genotypes (Fig 1A/B). Histopathology of J VFP -/- and J VFP R172H/- mice was consistent with pure erythroleukemia (PEL; Fig 1C). Analysis of stem and progenitor compartments demonstrated that the MEP (Megakaryocyte Erythroid Progenitors) compartment was significantly expanded in the bone marrow and spleen of both J VFP -/- and J VFP R172H/- mice, compared to other genotypes, at both the MPN and PEL stages of disease, consistent with erythroid-biased hematopoiesis (Fig 1D). Given we observed sequential MPN-&gt;AML progression, we hypothesized that additional genetic/biological events were required to promote LT. Sparse whole genome sequencing analysis revealed that transformation to PEL was associated with the development of recurrent copy number alterations (CNA) . Importantly, CNAs were restricted to the MEP compartment and not identified in the GMP compartment (Fig 1E), suggesting that MEPs might represent the leukemia initiating population with capability of acquiring additional genomic instability. Consistent with this hypothesis, mice transplanted with MEPs, but not GMPs from J VFP -/- and J VFP R172H/- mice at the MPN stage developed PEL. Further, single-cell RNA sequencing of J VF and J VFP -/- (at both MPN and PEL stage) demonstrated that the gene-expression signature of the leukemic population was most similar to that of erythroid progenitors and erythroblasts, and that by copy number inference analysis, CNAs were restricted to the leukemic population. We identified 617 genes up-regulated in both J VFP -/- and J VFP R172H/- leukemic MEPs when compared to J VF MEPs using RNA-seq. Pathway analysis demonstrated increased expression of Bone morphogenetic protein (BMP) pathway genes in both J VFP -/- and J VFP R172H/- leukemic mice (Fig 1F). Importantly, similar observations were made in human PEL samples as well. To investigate the function of this pathway, leukemic MEPs from J VFP -/- and J VFP R172H/- mice were transduced with an shRNA-targeting Bmp2 or a control and injected into lethally irradiated recipient mice. Mice injected with Bmp2-shRNA MEPs demonstrated leukemic regression and restoration of normal hematopoiesis as evidenced by significant reductions in leukocytosis (p&lt;0.05) and increased HGB (p&lt;0.05) and an increase in PLT count (p&lt;0.05/p&lt;0.01) (Fig 1G). Finally, as compared to mice injected with leukemic MEPs with control shRNA, mice injected with Bmp2-shRNA had significantly longer survival (p&lt;0.05) (Fig 1H). Thus, downregulation of Bmp2 results in attenuation of the leukemic phenotype. Using novel models, we have identified that bi-allelic, but not mono-allelic Tp53 alteration is required for LT of MPN. The leukemia initiating population arises within the MEP compartment and is characterized by recurrent CNAs acquired in a specific hematopoietic compartment. Moreover, the BMP/SMAD pathway is upregulated in leukemic MEPs and plays a functional role in LT. Collectively, our data yields novel biological insights into the process of leukemic transformation mediated by Tp53 alterations. Data on selective therapeutic targeting of p53-mutant PEL will be presented at the meeting. Figure 1 Figure 1. Disclosures Xiao: Stemline Therapeutics: Research Funding. Lowe: Oric Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Other: Founder; Blueprint Medicines: Membership on an entity's Board of Directors or advisory committees, Other: Founder; Mirimus, Inc: Membership on an entity's Board of Directors or advisory committees, Other: Founder; Faeth Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Founder; PMV Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Levine: Isoplexis: Membership on an entity's Board of Directors or advisory committees; Zentalis: Membership on an entity's Board of Directors or advisory committees; Ajax: Membership on an entity's Board of Directors or advisory committees; Auron: Membership on an entity's Board of Directors or advisory committees; Imago: Membership on an entity's Board of Directors or advisory committees; C4 Therapeutics: Membership on an entity's Board of Directors or advisory committees; Mission Bio: Membership on an entity's Board of Directors or advisory committees; Prelude: Membership on an entity's Board of Directors or advisory committees; QIAGEN: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Gilead: Honoraria; Amgen: Honoraria; Lilly: Honoraria; Morphosys: Consultancy; Roche: Honoraria, Research Funding; Incyte: Consultancy; Janssen: Consultancy; Astellas: Consultancy. Rampal: Pharmaessentia: Consultancy; Abbvie: Consultancy; Kartos: Consultancy; Constellation: Research Funding; Jazz Pharmaceuticals: Consultancy; Incyte: Consultancy, Research Funding; Disc Medicine: Consultancy; BMS/Celgene: Consultancy; Novartis: Consultancy; CTI: Consultancy; Sierra Oncology: Consultancy; Stemline: Consultancy, Research Funding; Blueprint: Consultancy; Memorial Sloan Kettering: Current Employment.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiao Yuan ◽  
Yonghe Wu ◽  
Kailin Yang ◽  
Huiping Liu ◽  
Guomin Zhang

Objective. To explore the effect of Jiawei Buguzhi Pills (JWBGZP) on the TGF-β-Smad pathway in postmenopausal osteoporosis (PMO) based on integrated pharmacological strategy. Method. The ETCM database was used to collect JWBGZP. GeneCards and OMIM databases were utilized to obtain PMO-related genes. Cytoscape was used for network construction and analysis, and DAVID was used for GO and KEGG enrichment analysis of key targets. Animal experiments and cell experiments were conducted to further explore the mechanism. The bone mass density was detected by dual-energy X-ray bone densitometer. The TGF-β1 and Smad4 mRNA in bone tissue were detected by RT-qPCR. The TGF-β1 and Smad4 protein in bone tissue were detected by the western blot. The TGF-β1 and Smad4 protein in osteoblasts were determined by immunohistochemistry. Result. A total of 721 JWBGZP potential targets and 385 PMO-related genes were obtained. The enrichment analysis showed that JWBGZP may regulate the TGF-beta signaling pathway, oxidation-reduction process, aging, response to hypoxia, response to ethanol, negative regulation of cell proliferation, PI3K-Akt, HIF-1, and other signaling pathways. The animal experiments showed that compared with the model group, the femoral bone mineral density and lumbar bone mineral density of the JWBGZP group increased (P < 0.05); the expression levels of TGF-β1 and Smad mRNA and proteins in the JWBGZP group were significantly higher (P < 0.05). The cell experiment results showed a large number of osteoblast stained blue-purple and orange-red calcified nodules. The expression levels of TGF-β1 and Smad proteins in the JWBGZP group were significantly higher than those in the blank control group and the sham operation group, and the protein expression levels in the model group were the lowest (P < 0.05). Conclusion. JWBGZP may be involved in PI3K-Akt, HIF-1, estrogen, prolactin, and other signaling pathways and regulate MAPK1, AKT1, PIK3CA, JAK2, and other gene targets, regulate bone metabolism, and thereby treat PMO.


Sign in / Sign up

Export Citation Format

Share Document