Computational Models of Modulation of Oscillatory Dynamics

Author(s):  
Pawel Andrzej Herman
2018 ◽  
Vol 30 (11) ◽  
pp. 1590-1605 ◽  
Author(s):  
Alex Clarke ◽  
Barry J. Devereux ◽  
Lorraine K. Tyler

Object recognition requires dynamic transformations of low-level visual inputs to complex semantic representations. Although this process depends on the ventral visual pathway, we lack an incremental account from low-level inputs to semantic representations and the mechanistic details of these dynamics. Here we combine computational models of vision with semantics and test the output of the incremental model against patterns of neural oscillations recorded with magnetoencephalography in humans. Representational similarity analysis showed visual information was represented in low-frequency activity throughout the ventral visual pathway, and semantic information was represented in theta activity. Furthermore, directed connectivity showed visual information travels through feedforward connections, whereas visual information is transformed into semantic representations through feedforward and feedback activity, centered on the anterior temporal lobe. Our research highlights that the complex transformations between visual and semantic information is driven by feedforward and recurrent dynamics resulting in object-specific semantics.


Author(s):  
Marbelys Rodriguez Pino ◽  
Illyce Nuñez ◽  
Chuan Chen ◽  
Maitreyi E. Das ◽  
David J. Wiley ◽  
...  

AbstractThe highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics in Schizosaccharomyces pombe cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 distributions to coexist in cell populations. For individual wild type cells, however, growth follows a stereotypical pattern where Cdc42 distribution is initially asymmetrical in young daughter cells and becomes more symmetrical as cell volume increases, enabling bipolar growth activation. To explore whether different states of Cdc42 activation are possible in a biological context, we examined S. pombe rga4Δ mutant cells, lacking the Cdc42 GTPase activating protein (GAP) Rga4. We found that monopolar rga4Δ mother cells divide asymmetrically leading to the emergence of both symmetric and asymmetric Cdc42 distributions in rga4Δ daughter cells. Using genetic screening approaches to identify mutants that alter the rga4Δ phenotype, we tested the predictions of different computational models that reproduce the unequal fate of daughter cells. We found experimentally that the unequal distribution of active Cdc42 GTPase in daughter cells is consistent with an unequal inheritance of another Cdc42 GAP, Rga6, in the two daughter cells. Our findings highlight the crucial role of Cdc42 GAP protein localization in determining the morphological fate of cell progeny and ensuring consistent Cdc42 activation and growth patterns across generations.


2018 ◽  
Author(s):  
Alex Clarke ◽  
Barry J. Devereux ◽  
Lorraine K. Tyler

AbstractObject recognition requires dynamic transformations of low-level visual inputs to complex semantic representations. While this process depends on the ventral visual pathway (VVP), we lack an incremental account from low-level inputs to semantic representations, and the mechanistic details of these dynamics. Here we combine computational models of vision with semantics, and test the output of the incremental model against patterns of neural oscillations recorded with MEG in humans. Representational Similarity Analysis showed visual information was represented in alpha activity throughout the VVP, and semantic information was represented in theta activity. Furthermore, informational connectivity showed visual information travels through feedforward connections, while visual information is transformed into semantic representations through feedforward and feedback activity, centered on the anterior temporal lobe. Our research highlights that the complex transformations between visual and semantic information is driven by feedforward and recurrent dynamics resulting in object-specific semantics.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Bernhard P Staresina ◽  
Sebastian Michelmann ◽  
Mathilde Bonnefond ◽  
Ole Jensen ◽  
Nikolai Axmacher ◽  
...  

How do we retrieve vivid memories upon encountering a simple cue? Computational models suggest that this feat is accomplished by pattern completion processes involving the hippocampus. However, empirical evidence for hippocampal pattern completion and its underlying mechanisms has remained elusive. Here, we recorded direct intracranial EEG as human participants performed an associative memory task. For each study (encoding) and test (retrieval) event, we derived time-frequency resolved representational patterns in the hippocampus and compared the extent of pattern reinstatement for different mnemonic outcomes. Results show that successful associative recognition (AR) yields enhanced event-specific reinstatement of encoding patterns compared to non-associative item recognition (IR). Moreover, we found that gamma power (50–90 Hz) increases – in conjunction with alpha power (8–12 Hz) decreases not only distinguish AR from IR, but also correlate with the level of hippocampal reinstatement. These results link single-shot hippocampal pattern completion to episodic recollection and reveal how oscillatory dynamics in the gamma and alpha bands orchestrate these mnemonic processes.


Author(s):  
Kim Uittenhove ◽  
Patrick Lemaire

In two experiments, we tested the hypothesis that strategy performance on a given trial is influenced by the difficulty of the strategy executed on the immediately preceding trial, an effect that we call strategy sequential difficulty effect. Participants’ task was to provide approximate sums to two-digit addition problems by using cued rounding strategies. Results showed that performance was poorer after a difficult strategy than after an easy strategy. Our results have important theoretical and empirical implications for computational models of strategy choices and for furthering our understanding of strategic variations in arithmetic as well as in human cognition in general.


Author(s):  
Manuel Perea ◽  
Victoria Panadero

The vast majority of neural and computational models of visual-word recognition assume that lexical access is achieved via the activation of abstract letter identities. Thus, a word’s overall shape should play no role in this process. In the present lexical decision experiment, we compared word-like pseudowords like viotín (same shape as its base word: violín) vs. viocín (different shape) in mature (college-aged skilled readers), immature (normally reading children), and immature/impaired (young readers with developmental dyslexia) word-recognition systems. Results revealed similar response times (and error rates) to consistent-shape and inconsistent-shape pseudowords for both adult skilled readers and normally reading children – this is consistent with current models of visual-word recognition. In contrast, young readers with developmental dyslexia made significantly more errors to viotín-like pseudowords than to viocín-like pseudowords. Thus, unlike normally reading children, young readers with developmental dyslexia are sensitive to a word’s visual cues, presumably because of poor letter representations.


Sign in / Sign up

Export Citation Format

Share Document