Positive Electrodes of Nano-Scale for Lithium-Ion Batteries (Focusing on Nano-Size Effects)

Author(s):  
Jun-ichi Yamaki
2021 ◽  
Vol 498 ◽  
pp. 229885
Author(s):  
Rung-Chuan Lee ◽  
Joseph Franklin ◽  
Chixia Tian ◽  
Dennis Nordlund ◽  
Marca Doeff ◽  
...  

2017 ◽  
Vol 5 (40) ◽  
pp. 21214-21222 ◽  
Author(s):  
Jinhyeok Ahn ◽  
Sukeun Yoon ◽  
Seul Gi Jung ◽  
Jin-Heong Yim ◽  
Kuk Young Cho

By covering prepared electrodes with a PEDOT layer via VRP, the electrodes exhibited improved electrochemical performance compared to bare electrodes.


2019 ◽  
Author(s):  
Hui Yang ◽  
Jia-Yue Yang ◽  
Christopher Savory ◽  
Jonathan Skelton ◽  
Benjamin Morgan ◽  
...  

<div>LiCoO<sub>2</sub> is the prototype cathode in lithium ion batteries. It adopts a crystal structure with alternating Li<sup>+</sup> and CoO<sub>2</sub><sup>-</sup> layers along the hexagonal <0001> axis. It is well established that ionic and electronic conduction is highly anisotropic; however, little is known regarding heat transport. We analyse the phonon dispersion and lifetimes of LiCoO<sub>2</sub> using anharmonic lattice dynamics based on quantum chemical force constants. Around room temperature, the thermal conductivity in the hexagonal ab plane of the layered cathode is ≈ 6 times higher than that along the c axis based on the phonon Boltzmann transport. The low thermal conductivity (< 10Wm<sup>-1</sup>K<sup>-1</sup>) originates from a combination of short phonon lifetimes associated with anharmonic interactions between the octahedral face-sharing CoO<sub>2</sub><sup>-</sup> networks, as well as grain boundary scattering. The impact on heat management and thermal processes in lithium ion batteries based on layered positive electrodes is discussed.</div>


2020 ◽  
Vol MA2020-02 (68) ◽  
pp. 3474-3474
Author(s):  
Fumiya Kojima ◽  
Yoshinao Hoshi ◽  
Hikari Watanabe ◽  
Isao Shitanda ◽  
Masayuki Itagaki

Sign in / Sign up

Export Citation Format

Share Document