conductive additives
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 38)

H-INDEX

25
(FIVE YEARS 6)

Author(s):  
Igor A. Guschin

Based on the previously conducted analytical study of the destruction of conducting composites by lightning currents, methods for increasing their lightning resistance are considered. To substantiate these methods, an analysis of the current distribution at different ratios of transverse and longitudinal resistivity was carried out. One of the methods using conductive additives in the composition of the binder material allows you to influence the anisotropy of the conductive medium of carbon fiber. The parameters of the range of the degree of anisotropy of carbon fiber are proposed to achieve uniform current spreading and reduce the radius of destruction of the composite by lightning currents. The formula for the fracture radius in the absence of anisotropy is obtained and estimated calculations are performed. The method of reinforcing carbon fiber with thin wires to increase its lightning resistance is considered. Calculated expressions are found for estimating the weight, the number of delays per unit area, and the absence of overheating. Comparisons of weight characteristics for various reinforcing materials are carried out and a conclusion is made on their effectiveness. The advantages and disadvantages of this method of protection are considered. The third way to increase the lightning resistance of the composite suggests using a carbon fiber material with a woven structure as a protective coating. This protection reduces the energy release in the material and the size of the damage. It is concluded that it is necessary to control the lightning protection parameters and choose a coating with the required characteristics. The principles and criteria of lightning protection for real carbon fiber plastics will be considered in subsequent works.


2021 ◽  
Vol 21 (1) ◽  
pp. 3-20
Author(s):  
Aigul S. Istomina ◽  
◽  
Olga V. Bushkova ◽  

The third part of the review is devoted to polymer binders with electronic conductivity used to make composite electrodes for lithium electrochemical systems. Polymer semiconductors (“synthetic metals”), related polymers with additionally introduced functional groups, related copolymers and mixtures of polymers, as well as carbon chain polymers and copolymers with inсorporated polyaromatic fragments are considered. Such materials significantly improve electrical connectivity of the composite electrode and make it possible to eliminate or minimise the content of electrochemically inert conductive additives (carbon black, graphite powder), which positively influences on the specific capacity and cycling stability of the electrodes. Improving conditions of electronic transfer is especially important for the efficient use of active materials with extremely low intrinsic conductivity, such as Si, Li4Ti5O12, LiFePO4, etc. The final part of the review summarizes general principles of the targeted selection of a polymer binder.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1709
Author(s):  
Kaelan Rorabeck ◽  
Igor Zhitomirsky

Cathodes for supercapacitors with enhanced capacitive performance are prepared using MnO2 as a charge storage material and carbon nanotubes (CNT) as conductive additives. The enhanced capacitive properties are linked to the beneficial effects of catecholate molecules, such as chlorogenic acid and 3,4,5-trihydroxybenzamide, which are used as co-dispersants for MnO2 and CNT. The dispersant interactions with MnO2 and CNT are discussed in relation to the chemical structures of the dispersant molecules and their biomimetic adsorption mechanisms. The dispersant adsorption is a key factor for efficient co-dispersion in ethanol, which facilitated enhanced mixing of the nanostructured components and allowed for improved utilization of charge storage properties of the electrode materials with high active mass of 40 mg cm−2. Structural peculiarities of the dispersant molecules are discussed, which facilitate dispersion and charging. Capacitive properties are analyzed using cyclic voltammetry, chronopotentiometry and impedance spectroscopy. A capacitance of 6.5 F cm−2 is achieved at a low electrical resistance. The advanced capacitive properties of the electrodes are linked to the microstructures of the electrodes prepared in the presence of the dispersants.


2021 ◽  
pp. 2141005
Author(s):  
Yuta Fujii ◽  
Hiroaki Ito ◽  
Akira Miura ◽  
Nataly Carolina Rosero-Navarro ◽  
Kiyoharu Tadanaga ◽  
...  

We report the fast discharge–charge cycle of micro-sized FePS3 electrode particles in all-solid-state batteries (ASSBs) using sulfide electrolytes at 80[Formula: see text]C. At a current density of 2.04 mA cm[Formula: see text], corresponding to approximately 1 C, the capacity of the FePS3 electrodes reached [Formula: see text]180 mAh g[Formula: see text] without any electron or lithium-ion conductive additives. Galvanostatic intermittent titration technique (GITT) measurements showed a stable diffusion path of FePS3 represented by the product of the diffusion coefficient and square of the surface area. These electrochemical properties were compared with those of FeS, whose capacity was lower because of its unstable diffusion path.


2021 ◽  
Vol 26 ◽  
pp. 101934
Author(s):  
Xiaoxiao Han ◽  
Jiyu Cai ◽  
Xin Wang ◽  
Yongqiang Liu ◽  
Hua Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document