Adult Neurogenesis Controls Excitatory-Inhibitory Balance in the Olfactory Bulb

2003 ◽  
pp. 197-212
Author(s):  
Pierre-Marie Lledo ◽  
Armen Saghatelyan ◽  
Gilles Gheusi
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Wankun L Li ◽  
Monica W Chu ◽  
An Wu ◽  
Yusuke Suzuki ◽  
Itaru Imayoshi ◽  
...  

The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals. This increased ambiguity was primarily due to a decrease in MC suppressive responses. Intriguingly, these deficits in MC encoding were only observed during task engagement but not passive exposure. Our results indicate that young olfactory ABNs are essential for the enhancement of MC pattern separation in a task engagement-dependent manner, potentially functioning as a gateway for top-down modulation.


2016 ◽  
Vol 221 (9) ◽  
pp. 4741-4741
Author(s):  
Diego García-González ◽  
Verónica Murcia-Belmonte ◽  
Pedro F. Esteban ◽  
Felipe Ortega ◽  
David Díaz ◽  
...  

2012 ◽  
Vol 32 (11) ◽  
pp. 3652-3664 ◽  
Author(s):  
F. Lazarini ◽  
M.-M. Gabellec ◽  
N. Torquet ◽  
P.-M. Lledo

2017 ◽  
Author(s):  
Poonam Mishra ◽  
Rishikesh Narayanan

ABSTRACTThe ability of a neuronal population to effectuate response decorrelation has been identified as an essential prelude to efficient neural encoding. To what extent are diverse forms of local and afferent heterogeneities essential in accomplishing such response decorrelation in the dentate gyrus (DG)? Here, we incrementally incorporated four distinct forms of biological heterogeneities into conductance-based network models of the DG and systematically delineate their relative contributions to response decorrelation. We incorporated intrinsic heterogeneities by stochastically generating several electrophysiologically-validated basket and granule cell models that exhibited significant parametric variability, and introduced synaptic heterogeneities through randomized local synaptic strengths. In including adult neurogenesis, we subjected the valid model populations to randomized structural plasticity and matched neuronal excitability to electrophysiological data. We assessed networks comprising different combinations of these three local heterogeneities with identical or heterogeneous afferent inputs from the entorhinal cortex. We found that the three forms of local heterogeneities were independently and synergistically capable of mediating significant response decorrelation when the network was driven by identical afferent inputs. Strikingly, however, when we incorporated afferent heterogeneities into the network to account for the unique divergence in DG afferent connectivity, the impact of all three forms of local heterogeneities were significantly suppressed by the dominant role of afferent heterogeneities in mediating response decorrelation. Our results unveil a unique convergence of cellular- and network-scale degeneracy in the emergence of response decorrelation in the DG, and constitute a significant departure from the literature that assigns a critical role for local network heterogeneities in input discriminability.SIGNIFICANCE STATEMENTThe olfactory bulb and the dentate gyrus (DG) networks assimilate new neurons in adult rodents, with adult neurogenesis postulated to subserve efficacious information transfer by reducing correlations in neuronal responses to afferent inputs. Heterogeneities emerging from the lateral dendro-dendritic synapses, mediated by locally-projecting neurogenic inhibitory granule cells, are known to play critical roles in channel decorrelation in the olfactory bulb. However, the contributions of different heterogeneities in mediating response decorrelation in DG, comprising neurogenic excitatory granule cells projecting beyond DG and endowed with uniquely divergent afferent inputs, have not been delineated. Here, we quantitatively demonstrate the dominance of afferent heterogeneities, over multiple local heterogeneities, in the emergence of response decorrelation in DG, together unveiling cross-region degeneracy in accomplishing response decorrelation.


Sign in / Sign up

Export Citation Format

Share Document