In Vivo Proliferation of T and B Lymphocytes in the Epithelium and Lamina Propria of the Small Intestine

Author(s):  
Hermann J. Rothkötter ◽  
Timm Kirchhoff ◽  
Reinhard Pabst
Author(s):  
D.J. Unsworth

The gastrointestinal tract is protected by gut-associated lymphoid tissue that provides an environment where interaction occurs between luminal antigen and specially adapted immune tissue in Peyer’s patches (small intestine only) or lymphoid follicles. T and B lymphocytes primed in the gut migrate into the systemic circulation via the thoracic duct but home preferentially to the lamina propria of the intestine. Plasma cells of the lamina propria secrete immunoglobulin A as a dimer linked by a joining peptide....


1998 ◽  
Vol 274 (5) ◽  
pp. G945-G954 ◽  
Author(s):  
Michelina Plateroti ◽  
Deborah C. Rubin ◽  
Isabelle Duluc ◽  
Renu Singh ◽  
Charlotte Foltzer-Jourdainne ◽  
...  

The intestine is characterized by morphofunctional differences along the proximodistal axis. The aim of this study was to derive mesenchymal cell lines representative of the gut axis. We isolated and cloned rat intestinal subepithelial myofibroblasts raised from 8-day proximal jejunum, distal ileum, and proximal colon lamina propria. Two clonal cell lines from each level of the gut were characterized. They 1) express the specific markers vimentin, smooth muscle α-actin, and smooth muscle myosin heavy chain, revealed by immunofluorescence microscopy and 2) distinctly support endodermal cell growth in a coculture model, depending on their regional origin, and 3) the clones raised from the various proximodistal regions maintain the same pattern of morphogenetic and growth and/or differentiation factor gene expression as in vivo: hepatocyte growth and/or scatter factor and transforming growth factor-β1 mRNAs analyzed by RT-PCR were more abundant, in the colon and ileal clones and mucosal connective tissue, respectively. In addition, epimorphin mRNA studied by Northern blot was also the highest in one ileal clone, in which it was selectively upregulated by all-trans retinoic acid (RA) treatment. Epimorphin expression in isolated 8-day intestinal lamina propria was higher in the distal small intestine and proximal colon than in the proximal small intestine. In conclusion, we isolated and characterized homogeneous cell subtypes that can now be used to approach the molecular regulation of the epithelium-mesenchyme-dependent regional specificity along the gut.


Immunobiology ◽  
1992 ◽  
Vol 185 (1) ◽  
pp. 20-27
Author(s):  
Günther Dannecker ◽  
Salaheddine Mecheri ◽  
Michael K. Hoffmann

2004 ◽  
Vol 26 (2) ◽  
pp. 83-93 ◽  
Author(s):  
Dharmendra K. V. Boppana ◽  
G. Dhinakar RAJ ◽  
Lalitha John ◽  
Stephen K. Wikel ◽  
B. R. Latha ◽  
...  

2006 ◽  
Vol 73 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Gabriel Vinderola ◽  
Gabriela Perdigón ◽  
Jairo Duarte ◽  
Edward Farnworth ◽  
Chantal Matar

Nutritional status has a major impact on the immune system. Probiotic effects ascribed to fermented dairy products arise not only from whole microorganisms but also from metabolites (peptides, exopolysaccharides) produced during the fermentation. We recently demonstrated the immunomodulating capacity of kefir in a murine model. We now aimed at studying the immunomodulating capacity in vivo of the products derived from milk fermentation by kefir microflora (PMFKM) on the gut. BALB/c mice received the PMFKM for 2, 5 or 7 consecutive days. IgA+ and IgG+ cells were determined on histological slices of the small and large intestine. IL-4, IL-6, IL-10, IL-12, IFNγ and TNFα were determined in the gut, intestinal fluid and blood serum. IL-6 was also determined in the supernatant of a primary culture of small intestine epithelial cells challenged with PMFKM. PMFKM up-regulated IL-6 secretion, necessary for B-cell terminal differentiation to IgA secreting cells in the gut lamina propria. There was an increase in the number of IgA+ cells in the small and large intestine. The increase in the number of IgA+ cells was accompanied by an increase in the number of IL-4+, IL-10+ and IL-6+ cells in the small intestine. Effects of PMFKM in the large intestine were less widely apparent than the ones observed at the small intestine lamina propria. All cytokines that increased in the small intestine lamina propria, also did so in blood serum, reflecting here the immunostimulation achieved in the gut mucosa. We observed that the PMFKM induced a mucosal response and it was able to up and down regulate it for protective immunity, maintaining the intestinal homeostasis, enhancing the IgA production at both the small and large intestine level. The opportunity exists then to manipulate the constituents of the lumen of the intestine through dietary means, thereby enhancing the health status of the host.


2004 ◽  
Vol 199 (3) ◽  
pp. 411-416 ◽  
Author(s):  
Oliver Pabst ◽  
Lars Ohl ◽  
Meike Wendland ◽  
Marc-André Wurbel ◽  
Elisabeth Kremmer ◽  
...  

Humoral immunity in the gut-associated lymphoid tissue is characterized by the production of immunoglobulin A (IgA) by antibody-secreting plasma cells (PCs) in the lamina propria. The chemokine CCL25 is expressed by intestinal epithelial cells and is capable of inducing chemotaxis of IgA+ PCs in vitro. Using a newly generated monoclonal antibody against murine CCR9, we show that IgA+ PCs express high levels of CCR9 in the mesenteric lymph node (MLN) and Peyer's patches (PPs), but down-regulate CCR9 once they are located in the small intestine. In CCR9-deficient mice, IgA+ PCs are substantially reduced in number in the lamina propria of the small intestine. In adoptive transfer experiments, CCR9-deficient IgA+ PCs show reduced migration into the small intestine compared with wild-type controls. Furthermore, CCR9 mutants fail to mount a regular IgA response to an orally administered antigen, although the architecture and cell type composition of PPs and MLN are unaffected and are functional for the generation of IgA PCs. These findings provide profound in vivo evidence that CCL25/CCR9 guides PCs into the small intestine.


2014 ◽  
Vol 95 (6) ◽  
pp. 1307-1319 ◽  
Author(s):  
Ernest T. Chivero ◽  
Nirjal Bhattarai ◽  
Robert T. Rydze ◽  
Mark A. Winters ◽  
Mark Holodniy ◽  
...  

Human pegivirus (HPgV; previously called GB virus C/hepatitis G virus) has limited pathogenicity, despite causing persistent infection, and is associated with prolonged survival in human immunodeficiency virus-infected individuals. Although HPgV RNA is found in and produced by T- and B-lymphocytes, the primary permissive cell type(s) are unknown. We quantified HPgV RNA in highly purified CD4+ and CD8+ T-cells, including naïve, central memory and effector memory populations, and in B-cells (CD19+), NK cells (CD56+) and monocytes (CD14+) using real-time reverse transcription-PCR. Single-genome sequencing was performed on viruses within individual cell types to estimate genetic diversity among cell populations. HPgV RNA was present in CD4+ and CD8+ T-lymphocytes (nine of nine subjects), B-lymphocytes (seven of ten subjects), NK cells and monocytes (both four of five). HPgV RNA levels were higher in naïve (CD45RA+) CD4+ cells than in central memory and effector memory cells (P<0.01). HPgV sequences were highly conserved among subjects (0.117±0.02 substitutions per site; range 0.58–0.14) and within subjects (0.006±0.003 substitutions per site; range 0.006–0.010). The non-synonymous/synonymous substitution ratio was 0.07, suggesting a low selective pressure. Carboxyfluorescein succinimidyl ester (CFSE)-labelled HPgV RNA-containing particles precipitated by a commercial exosome isolation reagent delivered CSFE to uninfected monocytes, NK cells and T- and B-lymphocytes, and HPgV RNA was transferred to PBMCs with evidence of subsequent virus replication. Thus, HPgV RNA-containing serum particles including microvesicles may contribute to delivery of HPgV to PBMCs in vivo, explaining the apparent broad tropism of this persistent human RNA virus.


2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Flavia Novelli ◽  
Monia Vadrucci ◽  
Maria Manuela Rosado ◽  
Luigi Picardi ◽  
Eugenio Benvenuto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document