iga production
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 51)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 318
Author(s):  
Yayoi Aoki ◽  
Tomoya Ikeda ◽  
Naoto Tani ◽  
Miho Watanabe ◽  
Takaki Ishikawa

Viral infections increase the risk of developing allergies in childhood, and disruption of mucosal homeostasis is presumed to be involved. However, no study has reported a role for viral infections in such disruption. In this study, we clarified the mechanism of immunoglobulin A (IgA) overproduction in viral infections. Autopsies were performed on 33 pediatric cases, IgA and interferon (IFN)β levels were measured, and histopathological and immunohistochemical examinations were conducted. Furthermore, we cultured human cells and measured IFNβ and IgA levels to examine the effect of viral infections on IgA production. Blood IgA levels in viral infections were higher than in bacterial infections. Moreover, IFNβ levels in most viral cases were below the detection limit. Cell culture revealed increased IgA in gastrointestinal lymph nodes, especially in Peyer’s patches, due to enhanced IFNβ after viral stimulation. Conversely, respiratory regional lymph nodes showed enhanced IgA with no marked change in IFNβ. Overproduction of IgA, identified as an aberration of the immune system and resulting from excessive viral infection-induced IFNβ was observed in the intestinal regional lymph nodes, particularly in Peyer’s patches. Further, increased IgA without elevated IFNβ in the respiratory system suggested the possibility of a different mechanism from the gastrointestinal system.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3936
Author(s):  
Mamdooh Ghoneum ◽  
Shaymaa Abdulmalek

The potential of KDP, a lactic acid bacterial strain of Lactobacillus sakei, to enhance the production of mucosal specific immunoglobulin A (IgA) in mice and thereby enhance gut mucosal immunity was examined. KDP is composed of dead cells isolated from the Korean traditional food kimchi. Female BALB/c mice orally received 0.25 mg KDP once daily for 5 weeks and were co-administrated ovalbumin (OVA) for negative control and cholera toxin for positive control. Mice administered KDP exhibited increased secretory IgA (sIgA) contents in the small intestine, Peyer’s patches, serum, colon, and lungs as examined by ELISA. KDP also significantly increased the gene expression of Bcl-6, IL-10, IL-12p40, IL-21, and STAT4. In addition, KDP acted as a potent antioxidant, as indicated by its significant inhibitory effects in the range of 16.5–59.4% for DPPH, nitric oxide, maximum total antioxidant capacity, and maximum reducing power. Finally, KDP exhibited potent antimicrobial activity as evidenced by a significant decrease in the growth of 7 samples of gram-negative and gram-positive bacteria and Candida albicans. KDP’s adjuvant effect is shown to be comparable to that of cholera toxin. We conclude that KDP can significantly enhance the intestine’s secretory immunity to OVA, as well as act as a potent antioxidant and antimicrobial agent. These results suggest that orally administered KDP should be studied in clinical trials for antigen-specific IgA production.


2021 ◽  
Author(s):  
Mengling Chen ◽  
Jing Wang ◽  
Mengqin Yuan ◽  
Min Long ◽  
Sha Wang ◽  
...  

Pulmonary fibrosis is an interstitial lung disease that can be caused by various factors. Here, we first observed extensive IgA deposition in the extracellular matrix (ECM) of the lungs of mice with pulmonary fibrosis induced by silica inhalation. Consistent with this phenomenon, spatial transcriptomic sequencing of fresh mouse lung tissues from control mice and model mice showed that Igha transcripts were highly expressed in the lesion area. Single-cell RNA sequencing (scRNA-seq) and reconstruction of B cell receptor (BCR) sequences revealed a new cluster of cells with a shared BCR and high expression of genes related to immunoglobulin IgA production. Surprisingly, these clonal cells had more characteristics of AT2 (alveolar epithelial cell type 2) cells than B cells; thus, these cells were named AT2-like cells. Therefore, we propose that secretion of IgA into the ECM by AT2-like cells is an important process that occurs during lung fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Ma ◽  
Dongliang Li ◽  
Wenfeng Liu ◽  
Xiaoxiao Liu ◽  
Yingqi Xu ◽  
...  

Background/Aims: Atherosclerosis (AS) is one of the major leading causes of death globally, which is highly correlated with metabolic abnormalities. Resveratrol (REV) exerts beneficial effects on atherosclerosis. Our aim is to clarify the involvement of liver metabolic reprogramming and the atheroprotective effects of REV.Methods: ApoE-deficient mice were administered with normal diet (N), high-fat diet (H), or HFD with REV (HR). Twenty-four weeks after treatment, Oil Red O staining was used to assess the severity of AS. Non-targeted metabolomics was employed to obtain metabolic signatures of the liver from different groups.Results: High-fat diet–induced AS was alleviated by REV, with less lipid accumulation in the lesions. The metabolic profiles of liver tissues from N, H, and HR groups were analyzed. A total of 1,146 and 765 differentially expressed features were identified between N and H groups, and H and HR groups, respectively. KEGG enrichment analysis uncovered several metabolism-related pathways, which are potential pathogenesis mechanisms and therapeutic targets including “primary bile acid biosynthesis,” “phenylalanine metabolism,” and “glycerophospholipid metabolism.” We further conducted trend analysis using 555 metabolites with one-way ANOVA, where p < 0.05 and PLS-DA VIP >1. We found that REV could reverse the detrimental effect of high-fat diet–induced atherosclerosis. These metabolites were enriched in pathways including “biosynthesis of unsaturated fatty acids” and “intestinal immune network for IgA production.” The metabolites involved in these pathways could be the potential biomarkers for AS-related liver metabolic reprogramming and the mechanism of REV treatment.Conclusions: REV exerted atheroprotective effects partially by modulating the liver metabolism.


2021 ◽  
Author(s):  
Michael Müller ◽  
Johann Volzke ◽  
Behnam Subin ◽  
Silke Müller ◽  
Martina Sombetzki ◽  
...  

AbstractWhile vaccination programs against SARS-CoV-2 are globally ongoing, disparate strategies for the deployment of spike antigen show varying effectiveness. In order to explore this phenomenon, we sought to compare the early immune responses against AZD1222 and BNT162b2. SARS-CoV-2 seronegative participants received a single dose of either vaccine and were analyzed for immune cell, effector T cell and antibody dynamics. AZD1222 induced transient leukopenia and major changes among innate and adaptive subpopulations. Both vaccines induced spike protein specific effector T cells which were dominated by Th1 responses following AZD1222 vaccination. A significant reduction of anti-inflammatory T cells upon re-stimulation was also restricted to AZD1222 vaccinees. While IgM and IgG were the dominant isotypes elicited by AZD1222, BNT162b2 led to a significant production of IgG and IgA. Our results suggest that the strategy for spike antigen delivery impacts on how and to what extent immune priming against the main SARS-CoV-2 antigen proceeds.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fang Miao ◽  
Zhiguo Lou ◽  
Shuhua Ji ◽  
Dan Wang ◽  
Yaolan Sun ◽  
...  

PurposeAbnormal CLEC9A expression is concerned with carcinogenesis. However, the role of CLEC9A in lung adenocarcinoma (LUAD) remains unknown. The goal of this study was to reveal the role of CLEC9A in LUAD based on bioinformatics and cellular functional experiments.Materials and methodsData available from The Cancer Genome Atlas (TCGA) were employed to study CLEC9A expression and mutations in LUAD. Expression and alterations of CLEC9A were analyzed using UALCAN and cBioPortal, respectively. Kaplan–Meier analysis was used to analyze the effect of CLEC9A on the survival of LUAD. Protein–protein interaction (PPI) network was built using GeneMANIA analysis. The similar genes of CLEC9A were obtained using GEPIA analysis, while co-expression genes correlated with CLEC9A were identified using LinkedOmics analysis. The effects of CLEC9A expression on immune cell infiltration was assessed. The effect of CLEC9A on the proliferation, apoptosis, cell cycle distribution, and invasion of human LUAD cells was detected in the LUAD cell line.ResultsCLEC9A was downregulated and the CLEC9A gene was often altered in LUAD. The survival of LUAD patients was correlated with the expression level of CLEC9A. The similar genes of CLEC9A were linked to functional networks involving positive regulation of interleukin-12 production, plasma membrane and CD40 receptor binding, primary immunodeficiency, intestinal immune network for IgA production, and cell adhesion molecules pathways. Cell cycle, apoptosis, EMT, and RAS/MAPK were significantly enriched pathways in positive and negative correlation genes with CLEC9A. A difference in the immune infiltration level of immune cell between the high and low CLEC9A expression groups was observed. Somatic cell copy number alternations (CNAs) of the CLEC9A, including arm-level gain and arm-level deletion, observably changed the infiltration levels of B cells, CD4+ T cells, macrophages, and neutrophils in LUAD. Except for LAG3, the expression of CD274, CTLA4, PDCD1, and TIGIT was positively correlated with the expression level of CLEC9A. After transfection, overexpression and knockdown of CLEC9A could affect the proliferation, apoptosis, cell cycle distribution, and invasion of LUAD cells.ConclusionCLEC9A is associated with prognosis and tumor immune microenvironment of LUAD, suggesting that CLEC9A may be considered as a novel biomarker for LUAD.


2021 ◽  
Vol 207 (8) ◽  
pp. 2179-2191
Author(s):  
Yu-Bei Jin ◽  
Xin Cao ◽  
Chun-Wei Shi ◽  
Bo Feng ◽  
Hai-Bin Huang ◽  
...  

2021 ◽  
pp. ASN.2021010133
Author(s):  
Hongzhi Li ◽  
Zhichao Chen ◽  
Weitian Chen ◽  
Jingyi Li ◽  
Yunshuang Liu ◽  
...  

Background: IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Circulating immune complexes form that are prone to deposition in the mesangium, where they trigger glomerular inflammation. A growing body of evidence suggests that dysregulated expression of microRNAs in IgAN may play a significant role in establishing the disease phenotype. Methods: We generated single miR-23b-3p(miR-23b) knockout mice using CRISPR-Cas9. Results: In humans, miR-23b levels are downregulated in kidney biopsies and sera of patients with IgAN, and serum miR-23b levels are negatively correlated with serum IgA1 levels. We show that miR-23b-/- mice develop an IgAN-like phenotype of mesangial IgA and C3 deposition associated with development of albuminuria, hypertension, an elevated serum creatinine, and dysregulated mucosal IgA synthesis. Dysregulation of IgA production is likely mediated by the loss of miR-23b mediated suppression of activation-induced cytidine deaminase in mucosal B cells. In addition, we show that loss of miR-23b increases the susceptibility of the kidney to progressive fibrosis through loss of regulation of expression of gremlin 2 and IgA accumulation through downregulation of the transferrin receptor. Conclusions: Our findings suggest an indispensable role for miR-23b in kidney disease, and in particular, IgAN. miR-23b may in the future offer a novel therapeutic target for the treatment of IgAN.


2021 ◽  
Vol 8 ◽  
Author(s):  
Albert E. Jergens ◽  
Shadi Parvinroo ◽  
Jamie Kopper ◽  
Michael J. Wannemuehler

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal inflammation. The exact etiology remains unknown, however multiple factors including the environment, genetic, dietary, mucosal immunity, and altered microbiome structure and function play important roles in disease onset and progression. Supporting this notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in gnotobiotic mice have shown that mouse models of intestinal inflammation require a microbial community to develop colitis. Additionally, antimicrobial therapy in some IBD patients will temporarily induce remission further demonstrating an association between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal epithelium serves as a barrier between the luminal environment and the mucosal immune system and guards against harmful molecules and microorganisms while being permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote mucosal health by strengthening barrier integrity, increasing local defenses (mucin and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts suppress expression and localization of tight junction proteins, cause dysregulation of apoptosis/proliferation and increase pro-inflammatory signaling that directly damages the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells (IECs) and the luminal environment acting as mediators of barrier function in IBD. We will also share some of our translational observations of interactions between IECs, immune cells, and environmental factors contributing to maintenance of mucosal homeostasis, as it relates to GI inflammation and IBD in different animal models.


Author(s):  
Mauricio Guzman ◽  
Luke R. Lundborg ◽  
Shaila Yeasmin ◽  
Christopher J. Tyler ◽  
Nadia R. Zgajnar ◽  
...  

AbstractEfficient IgA transcytosis is critical for the maintenance of a homeostatic microbiota. In the canonical model, locally-secreted dimeric (d)IgA reaches the polymeric immunoglobulin receptor (pIgR) on intestinal epithelium via simple diffusion. A role for integrin αE(CD103)β7 during transcytosis has not been described, nor its expression by intestinal B cell lineage cells. We found that αE-deficient (αE−/−) mice have a luminal IgA deficit, despite normal antibody-secreting cells (ASC) recruitment, local IgA production and increased pIgR expression. This deficit was not due to dendritic cell (DC)-derived retinoic acid (RA) nor class-switching defects, as stool from RAG−/− mice reconstituted with αE−/− B cells was also IgA deficient. Flow cytometric, ultrastructural and transcriptional profiling showed that αEβ7-expressing ASC represent an undescribed subset of terminally-differentiated intestinal plasma cells (PC) that establishes direct cell to cell contact with intestinal epithelium. We propose that IgA not only reaches pIgR through diffusion, but that αEβ7+ PC dock with E-cadherin-expressing intestinal epithelium to directly relay IgA for transcytosis into the intestinal lumen.


Sign in / Sign up

Export Citation Format

Share Document