T Cell Tolerance and Antigen Presenting Cell Function in the Thymus

Author(s):  
David J. Izon ◽  
John D. Nieland ◽  
Lori A. Jones ◽  
Ada M. Kruisbeek
10.1038/nm962 ◽  
2003 ◽  
Vol 9 (12) ◽  
pp. 1469-1476 ◽  
Author(s):  
Douglas G Millar ◽  
Kristine M Garza ◽  
Bernhard Odermatt ◽  
Alisha R Elford ◽  
Nobuyuki Ono ◽  
...  

Nature ◽  
1989 ◽  
Vol 338 (6210) ◽  
pp. 74-76 ◽  
Author(s):  
Polly Matzinger ◽  
Sylvie Guerder

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1135-1143 ◽  
Author(s):  
Hongwei Wang ◽  
Fengdong Cheng ◽  
Alex Cuenca ◽  
Pedro Horna ◽  
Zheng Zheng ◽  
...  

Abstract Tumor antigen–specific T-cell tolerance imposes a significant barrier to the development of effective therapeutic cancer vaccines. Bone marrow–derived antigen-presenting cells (APCs) are critical in the induction of this unresponsive state. Here we show that in vitro treatment of APCs with the tyrosine kinase inhibitor, imatinib mesylate (STI-571), enhances the activation of naive antigen-specific T cells and restores the responsiveness of tolerant T cells from tumor-bearing hosts. Furthermore, in vivo treatment with STI-571 not only prevented the induction of tolerance in tumor-specific CD4+ T cells, preserving their responsiveness to a subsequent immunization, but also resulted in enhanced vaccine efficacy. These findings demonstrate that tolerance to tumor antigens is not an insurmountable obstacle and points to modulation of APC function as a promising strategy in the immunotherapy of cancer.


Diabetes ◽  
2006 ◽  
Vol 55 (7) ◽  
pp. 2098-2105 ◽  
Author(s):  
P. Alard ◽  
J. N. Manirarora ◽  
S. A. Parnell ◽  
J. L. Hudkins ◽  
S. L. Clark ◽  
...  

2000 ◽  
Vol 69 (7) ◽  
pp. 1332-1336 ◽  
Author(s):  
Christiane Knoop ◽  
Jamila Ismaili ◽  
Fr??d??ric Bult?? ◽  
Daniel Abramowicz ◽  
Marc Estenne ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2391-2391
Author(s):  
Hongwei Wang ◽  
Aung Naing ◽  
Fengdong Cheng ◽  
Pedro Horna ◽  
Ildelfonso Suarez ◽  
...  

Abstract Professional antigen-presenting cells (APCs) play an important role in the initiation of antigen-specific T-cell responses. The demonstration that these cells are also required for the induction of T-cell tolerance, placed APCs at the crossroads of immune activation versus immune tolerance. Recent studies have demonstrated that the inflammatory status of the APC at the time of antigen presentation is the central determinant of T-cell priming versus T-cell tolerance. As such, therapeutic induction of inflammatory APCs might override immune tolerance and enhance the efficacy of immunotherapeutic strategies targeting hematologic tumors. Lenalidomide (CC5013) is a thalidomide analogue with immunomodulatory properties. Phase I and Phase II clinical trials in patients with myelodysplastic syndrome (MDS) have shown high frequency of erythropoietic responses, particularly in patients with 5q31 deletion associated with emergence of polyclonal lymphoid infiltrate in responding patient bone marrows. This observation raised the question as to whether immunological mechanism(s) may mediate, at least in part, the beneficial effect of CC5013 in patients with MDS. To gain further insight into the effects of Lenalidomide on APC’s function and regulation of antigen-specific CD4+ T-cell responses, we treated peritoneal elicited macrophages (PEM) and bone marrow-derived dendritic cells (DCs) with escalating concentration of Lenalidomide in vitro. Enhanced expression of both B7.1 and B7.2 co-stimulatory molecules was observed in Lenalidomide-treated APCs relative to untreated APCs. No difference in the expression of MHC class II molecules or CD40 was detected. Assessment of cytokine production by ELISA showed that Lenalidomide-treated APCs produce higher levels of TNF-a, IL-6 and IL-10 in response to LPS stimulation as compared to untreated APCs. Next, we evaluated the ability of Lenalidomide-treated APCs to present cognate antigen to naïve and tolerant CD4+ T-cells specific for a MHC class II restricted epitope of influenza hemagglutinin (HA). We found that treatment of either PEM or DC with low doses of Lenalidomide (range: 1.5–12.5 uM) significantly enhanced their antigen-presenting capabilities leading to effective priming of naïve CD4+ T-cells confirmed by their increased production of IL-2 and IFN-gamma in response to cognate antigen. Taken together, our results shows that by inducing inflammatory APCs, Lenalidomide directs the outcome of antigen-specific T-cell responses. Furthermore, they have broadened the scope of this drug as a promising adjuvant in cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document