Dipodomys panamintinus (Panamint kangaroo rat)

Author(s):  
T. C. Hsu ◽  
Kurt Benirschke
Keyword(s):  
1971 ◽  
Vol 44 (2) ◽  
pp. 112-118 ◽  
Author(s):  
Jack Vernon ◽  
Paul Herman ◽  
Ernest Peterson

2018 ◽  
Vol 314 (4) ◽  
pp. R563-R573 ◽  
Author(s):  
Mun Aw ◽  
Tamara M. Armstrong ◽  
C. Michele Nawata ◽  
Sarah N. Bodine ◽  
Jeeeun J. Oh ◽  
...  

In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.


1976 ◽  
Vol 21 (3) ◽  
pp. 465-477
Author(s):  
D.E. Comings ◽  
T.A. Okada

Biochemical studies have suggested that some actin and myosin may be present in the nucleus. This raises the possibility that heterochromatin condensation might be the result of an actin-myosin rigour type complex. Since ATP dissociates actin and myosin, this possibility could be examined by determining the effect of ATP on heterochromatin condensation. Thin-section electron microscopy showed large amounts of condensed constitutive heterochromatin in the kidney nuclei and somewhat less in the liver nuclei of the kangaroo rat, Dipidomys ordii. Surprisingly, there were some nuclei in the brain which contained no condensed heterochromatin despite the fact that this genome is composed of 50% satellite DNA. Although washing kidney nuclei with solutions of 10 mM Tris-ATP caused marked decondensation of the heterochromatin, when they were washed with Mg-ATP the heterochromatin was more condensed than in the controls. This suggests the decondensation by Tris-ATP is due to its ability to chelate divalent cations and provides no support for condensation of heterochromatin being the result of myosin-actin interaction. Despite being decondensed, the chromatin fibres of heterochromatin were distinct from those of euchromatin. The heterochromatin formed rod-like 19-5 nm fibres, the euchromatin formed random coils of 11-0-nm fibres.


1964 ◽  
Vol 9 (3) ◽  
pp. 146 ◽  
Author(s):  
Walter W. Dalquest ◽  
Glen Collier
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document