Amino Acid Sequence and Spectroscopic Studies of Dutch Elm Disease Toxin, Cerato-ulmin

1993 ◽  
pp. 152-170 ◽  
Author(s):  
M. Yaguchi ◽  
M. Pusztai-Carey ◽  
C. Roy ◽  
W. K. Surewicz ◽  
P. R. Carey ◽  
...  
1992 ◽  
Vol 288 (2) ◽  
pp. 649-655 ◽  
Author(s):  
N Ioannidis ◽  
C E Cooper ◽  
R K Poole

The Escherichia coli haemoglobin-like flavohaemoprotein (Hmp) has been purified to near homogeneity using two chromatographic steps. The prosthetic groups are identified as FAD and protohaem IX. SDS/PAGE has indicated a molecular mass of 44 kDa for the monomeric protein consistent with the amino-acid sequence deduced from the hmp+ gene. The protein, as isolated, is in the Fe(III) state, exhibiting absorbance maxima at 403.5, 540 (shoulder) and 627 nm. The ferrous and carbonmonoxyferrous states resemble those of haemoglobin, showing maxima at 431.5 and 558 nm, and 421, 542 and 566 nm respectively. Upon aerobic addition of NAD(P)H, the ferric state is reduced to the oxygenated Fe(II) state, characterized by maxima at 413, 544 and 580 nm. This oxy form is not stable and slowly decays to the ferric state. Addition of dithionite and nitrite to the ferric protein results in the formation of a nitrosyl complex, whose e.p.r. characteristics indicate that the b-type haem is attached to the protein through a nitrogenous ligand, probably originating from a histidine residue.


2003 ◽  
Vol 93 (11) ◽  
pp. 1407-1414 ◽  
Author(s):  
F. Deng ◽  
R. Xu ◽  
G. J. Boland

The nucleotide sequence of the hypovirulence-associated double-stranded RNA (dsRNA) in hypovirulent isolate Sh12B of Sclerotinia homoeocarpa, the causal agent of dollar spot of turf grass, was determined. This large dsRNA (L-dsRNA) is 2,632 bp long and is A and U rich (61.0% A+U residues). One strand of this dsRNA contains an open reading frame (ORF) with the potential to encode a protein of 720 amino acids. This ORF contains 12 UGA codons, predicted to encode tryptophan in ascomycete mitochondria, and has a codon bias typical of mitochondrial genes, which is consistent with a mitochondrial localization of this dsRNA. The amino acid sequence contains conserved motifs typical of RNA-dependent RNA polymerases (RdRps). Sequence analyses of the nucleotide and RdRp-like protein revealed that the L-dsRNA is homologous with previously characterized mitochondrial viruses and dsRNAs from other phytopathogenic fungi, and shares 92.4% nucleotide and 95.1% amino acid sequence identities with the Ophiostoma novo-ulmi mitovirus 3a-Ld from Ophiostoma novo-ulmi, the causal agent of Dutch elm disease. The results indicate that these two dsRNAs are conspecific. This is the first report that a hypovirulence-associated dsRNA virus naturally occurs in two taxonomically distinct fungi, and indicates that horizontal transmission of this dsRNA virus may have occurred between these fungi.


Author(s):  
Sharon L. Davy ◽  
Jacques Breton ◽  
Michael J. Osborne ◽  
Andrew J. Thomson ◽  
Andrew P. Thurgood ◽  
...  

Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.


1989 ◽  
Vol 61 (03) ◽  
pp. 437-441 ◽  
Author(s):  
Cindra Condra ◽  
Elka Nutt ◽  
Christopher J Petroski ◽  
Ellen Simpson ◽  
P A Friedman ◽  
...  

SummaryThe present work reports the discovery and charactenzation of an anticoagulant protein in the salivary gland of the giant bloodsucking leech, H. ghilianii, which is a specific and potent inhibitor of coagulation factor Xa. The inhibitor, purified to homogeneity, displayed subnanomolar inhibition of bovine factor Xa and had a molecular weight of approximately 15,000 as deduced by denaturing SDS-PAGE. The amino acid sequence of the first 43 residues of the H. ghilianii derived inhibitor displayed a striking homology to antistasin, the recently described subnanomolar inhibitor of factor Xa isolated from the Mexican leech, H. officinalis. Antisera prepared to antistasin cross-reacted with the H. ghilianii protein in Western Blot analysis. These data indicate that the giant Amazonian leech, H. ghilianii, and the smaller Mexican leech, H. officinalrs, have similar proteins which disrupt the normal hemostatic clotting mechanisms in their mammalian host’s blood.


1993 ◽  
Vol 69 (03) ◽  
pp. 217-220 ◽  
Author(s):  
Jonathan B Rosenberg ◽  
Peter J Newman ◽  
Michael W Mosesson ◽  
Marie-Claude Guillin ◽  
David L Amrani

SummaryParis I dysfibrinogenemia results in the production of a fibrinogen molecule containing a functionally abnormal γ-chain. We determined the basis of the molecular defect using polymerase chain reaction (PCR) to amplify the γ-chain region of the Paris I subject’s genomic DNA. Comparative sequence analysis of cloned PCR segments of normal and Paris I genomic DNA revealed only an A→G point mutation occurring at nucleotide position 6588 within intron 8 of the Paris I γ-chain gene. We examined six normal individuals and found only normal sequence in this region, indicating that this change is not likely to represent a normal polymorphism. This nucleotide change leads to a 45 bp fragment being inserted between exons 8 and 9 in the mature γparis I chain mRNA, and encodes a 15 amino acid insert after γ350 [M-C-G-E-A-L-P-M-L-K-D-P-C-Y]. Alternative splicing of this region from intron 8 into the mature Paris I γ-chain mRNA also results after translation into a substitution of S for G at position γ351. Biochemical studies of 14C-iodoacetamide incorporation into disulfide-reduced Paris I and normal fibrinogen corroborated the molecular biologic predictions that two additional cysteine residues exist within the γpariS I chain. We conclude that the insertion of this amino acid sequence leads to a conformationallyaltered, and dysfunctional γ-chain in Paris I fibrinogen.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


1971 ◽  
Vol 68 (1_Supplb) ◽  
pp. S48
Author(s):  
P. L. Barthe ◽  
L. Schenkel-Hulliger ◽  
W. Rittel ◽  
P. A. Desaulles

Diabetes ◽  
1980 ◽  
Vol 29 (10) ◽  
pp. 782-787 ◽  
Author(s):  
F. M. Ng ◽  
J. Bornstein ◽  
C. E. Pullin ◽  
J. O. Bromley ◽  
S. L. Macaulay

Sign in / Sign up

Export Citation Format

Share Document