Neontological Inferences of Evolutionary Pattern and Process in the Salamander Family Plethodontidae

1984 ◽  
pp. 119-217 ◽  
Author(s):  
Allan Larson
Cladistics ◽  
1990 ◽  
Vol 6 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Jonathan A. Coddington

Paleobiology ◽  
2009 ◽  
Vol 35 (3) ◽  
pp. 413-431 ◽  
Author(s):  
David Jones

The excellent fossil record of conodonts represents an ideal, yet underutilized, resource for resolving fundamental issues of pattern and process in evolutionary theory. However, this potential has not been exploited because the quantitative understanding of the evolution of conodont element morphology is limited. This work applies standardized morphometric protocols to skeletal elements belonging to the conodontPterospathodus, derived from a densely sampled section from Estonia. It has established a robust quantitative framework for morphological variation inPterospathodus, permitting statistical analysis of the current qualitative hypotheses of evolutionary pattern within this genus for the first time. Apparent directional trends were statistically compared with patterns expected for directional evolution, an unbiased random walk and stasis, using maximum-likelihood model fitting, rescaled range analysis, and the runs test. Results confirmed the presence of trends in size and shape change through time, providing an example of convincing directional morphological change in a fossil lineage. The morphometric analyses have also allowed quantitative investigation of ontogenetic processes inPterospathodus, suggesting that allometric repatterning was the proximal mechanism responsible for mediating the observed shifts in morphology through time. The results have demonstrated that conodonts represent an important resource for understanding evolutionary pattern and process in the fossil record.


2020 ◽  
Vol 69 (6) ◽  
pp. 1106-1121
Author(s):  
Felix Vaux ◽  
Michael R Gemmell ◽  
Simon F K Hills ◽  
Bruce A Marshall ◽  
Alan G Beu ◽  
...  

Abstract In order to study evolutionary pattern and process, we need to be able to accurately identify species and the evolutionary lineages from which they are derived. Determining the concordance between genetic and morphological variation of living populations, and then directly comparing extant and fossil morphological data, provides a robust approach for improving our identification of lineages through time. We investigate genetic and shell morphological variation in extant species of Penion marine snails from New Zealand, and extend this analysis into deep time using fossils. We find that genetic and morphological variation identify similar patterns and support most currently recognized extant species. However, some taxonomic over-splitting is detected due to shell size being a poor trait for species delimitation, and we identify incorrect assignment of some fossil specimens. We infer that a single evolutionary lineage (Penion sulcatus) has existed for 22 myr, with most aspects of shell shape and shell size evolving under a random walk. However, by removing samples previously classified as the extinct species P. marwicki, we instead detect morphological stasis for one axis of shell shape variation. This result demonstrates how lineage identification can change our perception of evolutionary pattern and process. [Genotyping by sequencing; geometric morphometrics; morphological evolution; Neogastropoda; phenotype; speciation; stasis.]


2020 ◽  
Author(s):  
Maya Braun ◽  
Elad Sharon ◽  
Irene Unterman ◽  
Maya Miller ◽  
Anna Shtern Mellul ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Manuel Will ◽  
Mario Krapp ◽  
Jay T. Stock ◽  
Andrea Manica

AbstractIncreasing body and brain size constitutes a key macro-evolutionary pattern in the hominin lineage, yet the mechanisms behind these changes remain debated. Hypothesized drivers include environmental, demographic, social, dietary, and technological factors. Here we test the influence of environmental factors on the evolution of body and brain size in the genus Homo over the last one million years using a large fossil dataset combined with global paleoclimatic reconstructions and formalized hypotheses tested in a quantitative statistical framework. We identify temperature as a major predictor of body size variation within Homo, in accordance with Bergmann’s rule. In contrast, net primary productivity of environments and long-term variability in precipitation correlate with brain size but explain low amounts of the observed variation. These associations are likely due to an indirect environmental influence on cognitive abilities and extinction probabilities. Most environmental factors that we test do not correspond with body and brain size evolution, pointing towards complex scenarios which underlie the evolution of key biological characteristics in later Homo.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ivalú M. Ávila Herrera ◽  
Jiří Král ◽  
Markéta Pastuchová ◽  
Martin Forman ◽  
Jana Musilová ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Sign in / Sign up

Export Citation Format

Share Document