Class II Summary: Forest Responds by Exhibiting Alterations in Growth, Biomass, Species Composition, Disease, and Insect Outbreaks

Author(s):  
William H. Smith
Ecosystems ◽  
2021 ◽  
Author(s):  
Daniel Scherrer ◽  
Davide Ascoli ◽  
Marco Conedera ◽  
Christoph Fischer ◽  
Janet Maringer ◽  
...  

AbstractWidely observed inertia of forest communities contrasts with climate change projections that suggest dramatic alterations of forest composition for the coming decades. Disturbances might be a key process to catalyse changes in tree species composition under environmental change by creating opportunities for ‘new’ species to establish. To test this assumption, we compared two assessments (1993–1995, 2009–2017) from the Swiss National Forest Inventory to evaluate which forests were opened by natural canopy disturbance (that is, wind, insect outbreaks, fire and drought) and if these disturbances altered tree species composition both in terms of species-specific basal area and recruitment densities. Natural disturbances affected 14% of the Swiss forests within 25 years, with wind and insect outbreaks being the most frequent (75%) and fire and drought being rare (< 1.5%). Disturbances led to a shift from conifer to broadleaf tree species at low elevation, in particular in dense Picea abies stands, but no change was observed at higher elevations. The composition of undisturbed sites persisted during the same period. Our results demonstrate that undisturbed forests widely resist changes in tree species composition as an effect of direct ingrowth by stand-forming species. Disturbance events seem necessary to create opportunities for climatically ‘better suited and site-adapted’ species to (re-)establish and therefore potentially catalyse tree species turnover under environmental changes. We detected a reduction of tree species that were—centuries ago—cultivated outside their primary natural range, in particular P. abies, or depended on traditional management practices (Pinus sylvestris, Castanea sativa), which may inform us on how the projected increase in disturbance frequency and severity might filter tree species composition and hereby alter forest structure.


Author(s):  
T. A. Stewart ◽  
D. Liggitt ◽  
S. Pitts ◽  
L. Martin ◽  
M. Siegel ◽  
...  

Insulin-dependant (Type I) diabetes mellitus (IDDM) is a metabolic disorder resulting from the lack of endogenous insulin secretion. The disease is thought to result from the autoimmune mediated destruction of the insulin producing ß cells within the islets of Langerhans. The disease process is probably triggered by environmental agents, e.g. virus or chemical toxins on a background of genetic susceptibility associated with particular alleles within the major histocompatiblity complex (MHC). The relation between IDDM and the MHC locus has been reinforced by the demonstration of both class I and class II MHC proteins on the surface of ß cells from newly diagnosed patients as well as mounting evidence that IDDM has an autoimmune pathogenesis. In 1984, a series of observations were used to advance a hypothesis, in which it was suggested that aberrant expression of class II MHC molecules, perhaps induced by gamma-interferon (IFN γ) could present self antigens and initiate an autoimmune disease. We have tested some aspects of this model and demonstrated that expression of IFN γ by pancreatic ß cells can initiate an inflammatory destruction of both the islets and pancreas and does lead to IDDM.


1997 ◽  
Vol 56 (1-3) ◽  
pp. 84
Author(s):  
D Witherden
Keyword(s):  
Class Ii ◽  

Sign in / Sign up

Export Citation Format

Share Document