Tetracycline inducible MHC class II and class I expression

1997 ◽  
Vol 56 (1-3) ◽  
pp. 84
Author(s):  
D Witherden
Keyword(s):  
Class Ii ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 144-156
Author(s):  
Şule KARATAŞ ◽  
Fatma SAVRAN OĞUZ

Introduction: Peptides obtained by processing intracellular and extracellular antigens are presented to T cells to stimulate the immune response. This presentation is made by peptide receptors called major histocompatibility complex (MHC) molecules. The regulation mechanisms of MHC molecules, which have similar roles in the immune response, especially at the gene level, have significant differences according to their class. Objective: Class I and class II MHC molecules encoded by MHC genes on the short arm of the sixth chromosome are peptide receptors that stimulate T cell response. These peptides, which will enable the recognition of the antigen from which they originate, are loaded into MHC molecules and presented to T cells. Although the principles of loading and delivering peptides are similar for both molecules, the peptide sources and peptide loading mechanisms are different. In addition, class I molecules are expressed in all nucleated cells while class II molecules are expressed only in Antigen Presentation Cells (APC). These differences; It shows that MHC class I is not expressed by exactly the same transcriptional mechanisms as MHC class II. In our article, we aimed to compare the gene expressions of both classes and reveal their similarities and differences. Discussion and Conclusion: A better understanding of the transcriptional mechanisms of MHC molecules will reveal the role of these molecules in diseases more clearly. In our review, we discussed MHC gene regulation mechanisms with presence of existing informations, which is specific to the MHC class, for contribute to future research. Keywords: MHC class I, MHC class II, MHC gene regulation, promoter, SXY module, transcription


2020 ◽  
Vol 23 (8) ◽  
pp. 788-796
Author(s):  
Praveen K.P. Krishnamoorthy ◽  
Sekar Subasree ◽  
Udhayachandran Arthi ◽  
Mohammad Mobashir ◽  
Chirag Gowda ◽  
...  

Aim and Objective: Nipah virus (NiV) is a zoonotic virus of the paramyxovirus family that sporadically breaks out from livestock and spreads in humans through breathing resulting in an indication of encephalitis syndrome. In the current study, T cell epitopes with the NiV W protein antigens were predicted. Materials and Methods: Modelling of unavailable 3D structure of W protein followed by docking studies of respective Human MHC - class I and MHC - class II alleles predicted was carried out for the highest binding rates. In the computational analysis, epitopes were assessed for immunogenicity, conservation, and toxicity analysis. T – cell-based vaccine development against NiV was screened for eight epitopes of Indian - Asian origin. Results: Two epitopes, SPVIAEHYY and LVNDGLNII, have been screened and selected for further docking study based on toxicity and conservancy analyses. These epitopes showed a significant score of -1.19 kcal/mol and 0.15 kcal/mol with HLA- B*35:03 and HLA- DRB1 * 07:03, respectively by using allele - Class I and Class II from AutoDock. These two peptides predicted by the reverse vaccinology approach are likely to induce immune response mediated by T – cells. Conclusion: Simulation using GROMACS has revealed that LVNDGLNII epitope forms a more stable complex with HLA molecule and will be useful in developing the epitope-based Nipah virus vaccine.


Immunology ◽  
2011 ◽  
Vol 132 (4) ◽  
pp. 482-491 ◽  
Author(s):  
Mingjun Wang ◽  
Sheila T. Tang ◽  
Anette Stryhn ◽  
Sune Justesen ◽  
Mette V. Larsen ◽  
...  

2011 ◽  
Vol 11 (12) ◽  
pp. 823-836 ◽  
Author(s):  
Jacques Neefjes ◽  
Marlieke L. M. Jongsma ◽  
Petra Paul ◽  
Oddmund Bakke

1994 ◽  
Vol 3 (4) ◽  
pp. 297-307 ◽  
Author(s):  
Jacques Robert ◽  
Chantal Guiet ◽  
Louis Du Pasquier

Three new lymphoid tumors offering an assortment of variants in terms of MHC class I expressions, MHC class II expression, and Ig gene transcription have been discovered in the amphibianXenopus. One was developed in an individual of the isogenic LG15 clone (LG15/0), one in a frog of the LG15/40 clone (derived from a small egg recombinant of LG15), and one (ff-2) in a maleffsib of the individual in which MAR1, the first lymphoid tumor in Xenopus was found 2 years ago. These tumors developed primarily as thymus outgrowths and were transplantable in histocompatible tadpoles but not in nonhistocompatible hosts. Whereas LG15/0 and LG15/40 tumor cells also grow in adult LG15 frogs, theff-2 tumor, like the MAR1 cell line, is rejected by adultffanimals. Using flow cytometry with fluorescence-labeled antibodies and immunoprecipitation analysis, we could demonstrate that, like MAR1, these three new tumors express on their cell surface lymphopoietic markers recognized by mAbs FIF6 and RC47, as well as T-cell lineage markers recognized by mAbs AM22 (CD8-1ike) and X21.2, but not by immunologobulin (Ig) nor MHC class II molecules. Another lymphocyte-specific marker AM15 is expressed by 15/0 and 15/40 but notff-2 tumor cells. Theff-2 tumor cell expresses MHC class molecule in association withβ2-microglobulin on the surface, 15/40 cells contain cytoplasmic Iαchain that is barely detected at the cell surface by fluocytometry, and 15/0 cells do not synthesize class Iαchain at all. The three new tumors all produce large amounts of IgM mRNA of two different sizes but no Ig protein on the membrane nor in the cytoplasm. All tumor cell types synthesize large amount of Myc mRNA and MHC class I-like transcripts considered to be non classical.


2010 ◽  
Vol 37 (2) ◽  
pp. 483-490 ◽  
Author(s):  
Gerd Meyer zu Hörste ◽  
Holger Heidenreich ◽  
Anne K. Mausberg ◽  
Helmar C. Lehmann ◽  
Anneloor L.M.A. ten Asbroek ◽  
...  

2020 ◽  
Vol 221 (11) ◽  
pp. 1895-1906
Author(s):  
Raymond M Johnson ◽  
Norma Olivares-Strank ◽  
Gang Peng

Abstract Background The T-cell response to chlamydia genital tract infections in humans and mice is unusual because the majority of antigen-specific CD8 T cells are not class I restricted (referred to here as “unrestricted” or “atypical”). We previously reported that a subset of unrestricted murine chlamydia-specific CD8 T cells had a cytokine polarization pattern that included interferon (IFN)-γ and interleukin (IL)-13. Methods In this study, we investigated the transcriptome of CD8γ13 T cells, comparing them to Tc1 clones using microarray analysis. That study revealed that CD8γ13 polarization included IL-5 in addition to IFN-γ and IL-13. Adoptive transfer studies were performed with Tc1 clones and a CD8γ13 T-cell clone to determine whether either influenced bacterial clearance or immunopathology during Chlamydia muridarum genital tract infections. Results To our surprise, an adoptively transferred CD8γ13 T-cell clone was remarkably proficient at preventing chlamydia immunopathology, whereas the multifunctional Tc1 clone did not enhance clearance or significantly alter immunopathology. Mapping studies with major histocompatibility complex (MHC) class I- and class II-deficient splenocytes showed our previously published chlamydia-specific CD8 T-cell clones are MHC class II restricted. Conclusions The MHC class II-restricted CD8 T cells may play an important role in protection from intracellular pathogens that limit class I antigen presentation or diminish CD4 T-cell numbers or impair their function.


Sign in / Sign up

Export Citation Format

Share Document