6-Azauridine, an Inhibitor of the Purine Salvage Pathway

Author(s):  
G. Partsch ◽  
R. Eberl
Blood ◽  
1978 ◽  
Vol 52 (5) ◽  
pp. 886-895 ◽  
Author(s):  
M Borgers ◽  
H Verhaegen ◽  
M De Brabander ◽  
J De Cree ◽  
W De Cock ◽  
...  

Abstract Purine nucleoside phosphorylase (PNP), the enzyme schematically next to adenosine deaminase in the purine salvage pathway, has been demonstrated cytochemically in peripheral blood lymphocytes of healthy subjects and chronic lymphocytic leukemia (CLL) patients. The enzyme activity is confined to the cytosol. In healthy subjects the majority of lymphocytes are strongly reactive for PNP, whereas the rest are devoid of cytochemically demonstrable activity. The percentage of PNP- positive cells largely corresponds to the number of E rosette-forming cells and is inversely proportional to the number of Ig-bearing cells. In six of seven CLL patients studied only a minor percentage of the lymphocytes showed strong PNP activity, whereas the large majority (88%- -98%) possessed trace activity. Such patients have a high number of Ig- bearing cells and a low number of E rosette-forming cells. A different pattern of markers was found in the lymphocytes of the seventh CLL patient: 66% were strongly reactive for PNP, an important number formed E rosettes, and a minor percentage were Ig bearing. These data indicate that PNP can be useful as a “nonmembrane” marker in the differentiation of the B and T cell origin in CLL and deserves to be studied in other lymphoproliferative disorders.


2017 ◽  
Vol 21 (3) ◽  
pp. 677-695 ◽  
Author(s):  
Luciano Porto Kagami ◽  
Gustavo Machado das Neves ◽  
Ricardo Pereira Rodrigues ◽  
Vinicius Barreto da Silva ◽  
Vera Lucia Eifler-Lima ◽  
...  

2010 ◽  
Vol 169 (1) ◽  
pp. 40-49 ◽  
Author(s):  
Paul M. Riegelhaupt ◽  
María B. Cassera ◽  
Richard F.G. Fröhlich ◽  
Keith Z. Hazleton ◽  
Jonathan J. Hefter ◽  
...  

2010 ◽  
Vol 17 (23) ◽  
pp. 2456-2481 ◽  
Author(s):  
M. Berg ◽  
P. Van der Veken ◽  
A. Goeminne ◽  
A. Haemers ◽  
K. Augustyns

2020 ◽  
Author(s):  
Brent W. Anderson ◽  
Aili Hao ◽  
Kenneth A. Satyshur ◽  
James L. Keck ◽  
Jue D. Wang

ABSTRACTThe alarmones pppGpp and ppGpp mediate starvation response and maintain purine homeostasis to protect bacterial species. Xanthine phosphoribosyltransferase (XPRT) is a purine salvage enzyme that produces the nucleotide XMP from PRPP and xanthine. Combining structural, biochemical and genetic analyses, we show that pppGpp and ppGpp, as well as a third putative alarmone pGpp, all directly interact with XPRT and inhibit XPRT activity by competing with its substrate PRPP. Structural analysis reveals that ppGpp binds the PRPP binding motif within the XPRT active site. This motif is present in another (p)ppGpp target, the purine salvage enzyme HPRT, suggesting evolutionary conservation in different enzymes. However, XPRT oligomeric interaction is distinct from HPRT in that XPRT forms a symmetric dimer with two (p)ppGpp binding sites at the dimer interface. This results in two distinct regulatory features. First, XPRT cooperatively binds (p)ppGpp with a Hill coefficient of 2. Also, XPRT displays differential regulation by the alarmones as it is potently inhibited by both ppGpp and pGpp, but only modestly by pppGpp. Lastly, we demonstrate that the alarmones are necessary for protecting GTP homeostasis against excess environmental xanthine in Bacillus subtilis, suggesting that regulation of XPRT is key for regulating the purine salvage pathway.


Sign in / Sign up

Export Citation Format

Share Document