Comparison of Cellular Membranes of Liver with Emphasis on the Golgi Complex as a Discrete Organelle

Biomembranes ◽  
1971 ◽  
pp. 75-94 ◽  
Author(s):  
Becca Fleischer ◽  
Sidney Fleischer
Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


Author(s):  
R.J. Barrnett

This subject, is like observing the panorama of a mountain range, magnificent towering peaks, but it doesn't take much duration of observation to recognize that they are still in the process of formation. The mountains consist of approaches, materials and methods and the rocky substance of information has accumulated to such a degree that I find myself concentrating on the foothills in the foreground in order to keep up with the advance; the edifices behind form a wonderous, substantive background. It's a short history for such an accumulation and much of it has been moved by the members of the societies that make up this International Federation. My panel of speakers are here to provide what we hope is an interesting scientific fare, based on the fact that there is a continuum of biological organization from biochemical molecules through macromolecular assemblies and cellular membranes to the cell itself. Indeed, this fact explains the whole range of towering peaks that have emerged progressively during the past 25 years.


Author(s):  
William J. Dougherty

The regulation of secretion in exocrine and endocrine cells has long been of interest. Electron microscopic and other studies have demonstrated that secretory proteins synthesized on ribosomes are transported by the rough ER to the Golgi complex where they are concentrated into secretory granules. During active secretion, secretory granules fuse with the cell membrane, liberating and discharging their contents into the perivascular spaces. When secretory activity is suppressed in anterior pituitary cells, undischarged secretory granules may be degraded by lysosomes. In the parathyroid gland, evidence indicates that the level of blood Ca ions regulates both the production and release of parathormone. Thus, when serum Ca is low, synthesis and release of parathormone are both stimulated; when serum Ca is elevated, these processes are inhibited.


Author(s):  
Valerie V. Ernst

During the earliest stage of oocyte development in the limpet, Acmea scutum, Golgi complexes are small, few and randomly dispersed in the cytoplasm. As growth proceeds, the Golgi complexes increase in size and number and migrate to the periphery of the cell. At this time, fibrous structures resembling striated rootlets occur associated with the Golgi complexes. Only one fibrous structure appears to be associated with a Golgi complex.The fibers are periodically cross banded with an average of 4 dense fibrils and 6 lighter fibrils per period (Fig. 1). The cross fibrils have a center to center spacing of about 7 run which appears to be the same as that of the striated rootlets of the gill cilia in this animal.


1990 ◽  
Vol 63 (01) ◽  
pp. 127-132 ◽  
Author(s):  
Michèle Ménard ◽  
Kenneth M Meyers ◽  
David J Prieur

SummaryThe ultrastructure of lysosomes from bovine megakaryocytes (MK) and platelets was characterized using acid phosphatase cytochemistry with beta-glycerophosphate as substrate and cerium as a trapping agent. The technique was easily reproducible; cerium-phosphate precipitates were uniform, readily visualized, and there was a virtual absence of nonspecific reaction product. Acid phosphatase was localized in the trans aspect of the Golgi complex and/or granules of less than 50 nm to 650 nm diameters in MK at all stages of maturation. Forty percent of the MK lysosomes contained inclusions of variable shapes, sizes and electron-density and were classified as secondary lysosomes. Twenty-four percent of the platelet sections contained acid phosphatase-positive granules. Fifty-four percent of these were secondary lysosomes. This is the initial report demonstrating secondary lysosomes in either resting MK or platelets using acid phosphatase cytochemistry. These findings suggest that MK and platelet lysosomes have an intracellular function in resting MK and platelets.


Sign in / Sign up

Export Citation Format

Share Document