Demonstration of Secondary Lysosomes in Bovine Megakaryocytes and Platelets Using Acid Phosphatase Cytochemistry with Cerium as a Trapping Agent

1990 ◽  
Vol 63 (01) ◽  
pp. 127-132 ◽  
Author(s):  
Michèle Ménard ◽  
Kenneth M Meyers ◽  
David J Prieur

SummaryThe ultrastructure of lysosomes from bovine megakaryocytes (MK) and platelets was characterized using acid phosphatase cytochemistry with beta-glycerophosphate as substrate and cerium as a trapping agent. The technique was easily reproducible; cerium-phosphate precipitates were uniform, readily visualized, and there was a virtual absence of nonspecific reaction product. Acid phosphatase was localized in the trans aspect of the Golgi complex and/or granules of less than 50 nm to 650 nm diameters in MK at all stages of maturation. Forty percent of the MK lysosomes contained inclusions of variable shapes, sizes and electron-density and were classified as secondary lysosomes. Twenty-four percent of the platelet sections contained acid phosphatase-positive granules. Fifty-four percent of these were secondary lysosomes. This is the initial report demonstrating secondary lysosomes in either resting MK or platelets using acid phosphatase cytochemistry. These findings suggest that MK and platelet lysosomes have an intracellular function in resting MK and platelets.

1983 ◽  
Vol 158 (6) ◽  
pp. 2108-2126 ◽  
Author(s):  
M A Horwitz

The interactions between the L. pneumophila phagosome and monocyte lysosomes were investigated by prelabeling the lysosomes with thorium dioxide, an electron-opaque colloidal marker, and by acid phosphatase cytochemistry. Phagosomes containing live L. pneumophila did not fuse with secondary lysosomes at 1 h after entry into monocytes or at 4 or 8 h after entry by which time the ribosome-lined L. pneumophila replicative vacuole had formed. In contrast, the majority of phagosomes containing formalin-killed L. pneumophila, live Streptococcus pneumoniae, and live Escherichia coli had fused with secondary lysosomes by 1 h after entry into monocytes. Erythromycin, a potent inhibitor of bacterial protein synthesis, at a concentration that completely inhibits L. pneumophila intracellular multiplication, had no influence on fusion of L. pneumophila phagosomes with secondary lysosomes. However, coating live L. pneumophila with antibody or with antibody and complement partially overcame the inhibition of fusion. Also activating the monocytes promoted fusion of a small proportion of phagosomes containing live L. pneumophila with secondary lysosomes. Acid phosphatase cytochemistry revealed that phagosomes containing live L. pneumophila did not fuse with either primary or secondary lysosomes. In contrast to phagosomes containing live bacteria, the majority of phagosomes containing formalin-killed L. pneumophila were fused with lysosomes by acid phosphatase cytochemistry. The capacity of L. pneumophila to inhibit phagosome-lysosome fusion may be a critical mechanism by which the bacterium resists monocyte microbicidal effects.


1990 ◽  
Vol 64 (01) ◽  
pp. 156-160 ◽  
Author(s):  
Michèle Ménard ◽  
Kenneth M Meyers ◽  
David J Prieur

SummaryThe ultrastructure of lysosomes from megakaryocytes (MK) and platelets of cattle with the Chediak-Higashi syndrome (CHS) was characterized using acid phosphatase histochemistry with beta-glycerophosphate as substrate and cerium as a capturing agent. Acid phosphatase was localized in the trans aspect of the Golgi complex and/or granules in MK at all stages of maturation. Morphometric analysis of the diameter of each lysosome was performed on MK from CHS cattle and compared to MK from normal cattle. Lysosomes in CHS MK were neither enlarged nor different with respect to classification as secondary lysosomes, which composed 35% of the lysosomes in CHS MK. Lysosomes were demonstrated in 22% of the CHS platelet sections and appeared similar to those from normal cattle, 56% of them being classified as secondary lysosomes. Why lysosomes are not enlarged in bovine CHS MK and platelets, whereas they are enlarged in most other cell types, remains unknown.


1972 ◽  
Vol 136 (5) ◽  
pp. 1173-1194 ◽  
Author(s):  
Thomas C. Jones ◽  
James G. Hirsch

Electron microscope methods have been used to study delivery of macrophage primary or secondary lysosomal contents to phagocytic vacuoles containing living or dead toxoplasmas. Secondary lysosomes were labeled by culturing the cells in colloidal thorium dioxide (thorotrast) or in ferritin. Acid phosphatase cytochemistry was employed for detection of primary as well as secondary lysosomal constituents. These various lysosomal labels were present in nearly all vacuoles containing toxoplasmas killed with glutaraldehyde, or in vacuoles containing those parasites undergoing degeneration 1 hr after the uptake of living toxoplasmas. In contrast, at times ranging from 1 to 20 hr after infection, no vacuoles containing morphologically normal, apparently viable toxoplasmas were thorotrast or ferritin positive, and only rarely did these vacuoles react for acid phosphatase. In many instances vacuoles containing viable toxoplasmas and no lysosomal markers were situated in the same cell nearby to vacuoles containing degenerating toxoplasmas and lysosomal constituents, thus indicating that the determinants of lysosomal fusion were operating locally in the immediate vicinity of the phagocytic vacuole, and not operating to influence general cell function. Thus, some toxoplasmas are able to prevent the delivery of lysosomal contents, and apparently the phagocytic vacuole provides for these parasites a sheltered microenvironment ideal for their growth. Morphologic evidence indicated that living toxoplasmas altered the phagocytic vacuolar membrane in macrophages, fibroblasts, and HeLa cells. Within minutes after phagocytosis, the vacuole became surrounded by closely apposed strips of endoplasmic reticulum and mitochondria; somewhat later, microvillous protrusions of the membrane into the vacuole were seen. These morphologic features of phagocytic vacuoles containing living toxoplasmas may be of importance in relation to the absence of lysosomal fusion, or they may serve some function in protecting the host cell or in nourishing the parasite.


1959 ◽  
Vol 5 (3) ◽  
pp. 441-452 ◽  
Author(s):  
David B. Slautterback ◽  
Don W. Fawcett

The general histological organization of Hydra is reviewed and electron microscopic observations are presented which bear upon the nature of the mesoglea, the mode of attachment of the contractile processes of the musculo-epithelial cells, and the cytomorphosis of the cnidoblasts. Particular attention is devoted to the changes in form and distribution of the cytoplasmic organelles in the course of nematocyst formation. The undifferentiated interstitial cell is characterized by a small Golgi complex, few mitochondria, virtual absence of the endoplasmic reticulum, and a cytoplasmic matrix crowded with fine granules presumed to be ribonucleoprotein. These cytological characteristics persist through the early part of the period of interstitial cell proliferation which leads to formation of clusters of cnidoblasts. With the initiation of nematocyst formation in the cnidoblasts, numerous membrane-bounded vesicles appear in their cytoplasm. These later coalesce to form a typical endoplasmic reticulum with associated ribonucleoprotein granules. During the ensuing period of rapid growth of the nematocyst the reticulum becomes very extensive and highly organized. Finally, when the nematocyst has attained its full size, the reticulum breaks up again into isolated vesicles. The Golgi complex remains closely applied to the apical pole of the nematocyst throughout its development and apparently contributes to its enlargement by segregating formative material in vacuoles whose contents are subsequently incorporated in the nematocyst. The elaboration of this complex cell product appears to require the cooperative participation of the endoplasmic reticulum and the Golgi complex. Their respective roles in the formative process are discussed.


1986 ◽  
Vol 103 (4) ◽  
pp. 1235-1247 ◽  
Author(s):  
W J Brown ◽  
J Goodhouse ◽  
M G Farquhar

We have examined the distribution of mannose-6-phosphate (Man6P) receptors (215 kD) for lysosomal enzymes in cultured Clone 9 hepatocytes at various times after the addition or removal of lysosomotropic weak bases (chloroquine or NH4Cl). Our previous studies demonstrated that after treatment with these agents, Man6P receptors are depleted from their sorting site in the Golgi complex and accumulate in dilated vacuoles that could represent either endosomes or lysosomes (Brown, W. J., E. Constantinescu, and M. G. Farquhar, 1984, J. Cell Biol., 99:320-326). We have now investigated the nature of these vacuoles by labeling NH4Cl-treated cells simultaneously with anti-Man6P receptor IgG and lysosomal or endosomal markers. The structures in which the immunolabeled receptors are found were identified as endosomes based on the presence of endocytic tracers (lucifer yellow and cationized ferritin). The lysosomal membrane marker, lgp120, was associated with a separate population of swollen vacuoles that did not contain detectable Man6P receptors. When cells were allowed to recover from weak base treatment, the receptors reappeared in the Golgi cisternae of most cells (approximately 90%) within approximately 20 min, indicating that as the intra-endosomal pH drops and lysosomal enzymes dissociate, the entire population of receptors rapidly recycles to Golgi cisternae. When NH4Cl-treated cells were allowed to endocytose Man6P, a competitive inhibitor of lysosomal enzyme binding, the receptors also recycled to the Golgi cisternae, suggesting that lysosomal enzymes can dissociate from the receptors under these conditions (high pH + presence of competitive inhibitor). From these results it can be concluded that the intracellular itinerary of the 215-kD Man6P receptor involves its cycling via coated vesicles between the Golgi complex and endosomes, ligand dissociation is both necessary and sufficient to trigger the recycling of Man6P receptors to the Golgi complex, and endosomes rather than secondary lysosomes represent the junction where endocytosed material and primary lysosomes carrying receptor-bound lysosomal enzymes meet.(ABSTRACT TRUNCATED AT 400 WORDS)


1964 ◽  
Vol 23 (1) ◽  
pp. 151-172 ◽  
Author(s):  
J. D. Jamieson ◽  
G. E. Palade

Large populations (up to 600/cell) of spherical, electron-opaque granules ∼0.3 to 0.4 µ in diameter are characteristically found in muscle fibers of mammalian atria. They are absent in muscle fibers of the ventricles. The granules are concentrated in the sarcoplasmic core and occur in lesser numbers in the sarcoplasmic layers between myofibrils and under the plasma membrane. Their intimate association with a central voluminous Golgi complex and the frequent occurrence of material reminiscent of the granular content within the cisternae of the Golgi complex suggest that the latter is involved in the formation of the atrial granules. Atrial granules are larger and more numerous in smaller species (rat, mouse), and generally smaller and less numerous in larger mammals (dog, cat, human); they are absent from the atrial fibers of very young fetuses (rat) but are present in those of newborn animals. A small population of bodies containing glycogen particles and remnants of the endoplasmic reticulum and mitochondria occurs in the sarcoplasmic cores of atrial as well as ventricular muscle fibers in the rat; they contain acid phosphatase and thus appear to be residual bodies of autolytic foci. Their frequency increases with the age of the animal. Typical lipofuscin pigment granules, which are known to contain acid phosphatase and are found in the sarcoplasmic cores in old animals (cat, dog and human), are presumed to arise by progressive aggregation and fusion of small residual bodies.


1980 ◽  
Vol 28 (1) ◽  
pp. 78-81 ◽  
Author(s):  
C Oliver

Acid phosphatase activity, a lysosomal marker, is commonly demonstrated using the Gomori technique with cytidine 5'-monophosphate or beta-glycerophosphate as substrate. Using this lead capture method on mouse and rat exorbital lacrimal, parotid, and pancreatic acinar cells, reaction product was localized in GERL, forming secretory granules, and secondary lysosomes. However, a different cytochemical localization was observed for inorganic trimetaphosphatase, another lysosomal enzyme. When the technique for trimetaphosphatase activity, a metal chelation method, was applied to exocrine acinar cells, reaction produce was conspicuously absent from GERL and forming secretory granules, but was present in secondary lysosomes, occasionally in Golgi saccules, and in previously unreported basal elongated lysosomes. The differences in the localization of the two enzymatic activities emphasizes the importance of employing more than one substrate where possible, and raises questions concerning the mechanism of delivery of acid hydrolases to secondary lysosomes.


Sign in / Sign up

Export Citation Format

Share Document