Electronic Properties of Quantum Dots and Modulated Quantum Wires

Author(s):  
J. A. Brum ◽  
G. Bastard
2021 ◽  
Vol 103 (23) ◽  
Author(s):  
H. V. Grushevskaya ◽  
G. G. Krylov ◽  
S. P. Kruchinin ◽  
B. Vlahovic ◽  
Stefano Bellucci

2016 ◽  
Vol 18 (5) ◽  
pp. 3854-3861 ◽  
Author(s):  
Szymon Godlewski ◽  
Marek Kolmer ◽  
Mads Engelund ◽  
Hiroyo Kawai ◽  
Rafal Zuzak ◽  
...  

Starphene molecules are weakly attached to single dangling bond quantum dots, retaining the unperturbed originally designed electronic properties.


2017 ◽  
Vol 5 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Bartłomiej Cichy ◽  
Dominika Wawrzynczyk ◽  
Marek Samoc ◽  
Wiesław Stręk

Electronic as well as third-order nonlinear optical properties of chalcopyrite AgInS2 and non-stoichiometric spinel AgIn5S8 quantum dots compared with corresponding Zn2+ alloyed compounds are presented in this work.


2013 ◽  
Vol 4 (19) ◽  
pp. 3292-3297 ◽  
Author(s):  
Suresh Sarkar ◽  
Shinjita Acharya ◽  
Arup Chakraborty ◽  
Narayan Pradhan

MRS Bulletin ◽  
2001 ◽  
Vol 26 (12) ◽  
pp. 998-1004 ◽  
Author(s):  
Victor I. Klimov ◽  
Moungi G. Bawendi

Semiconductor materials are widely used in both optically and electrically pumped lasers. The use of semiconductor quantum wells (QWs) as optical-gain media has resulted in important advances in laser technology. QWs have a two-dimensional, step-like density of electronic states that is nonzero at the band edge, enabling a higher concentration of carriers to contribute to the band-edge emission and leading to a reduced lasing threshold, improved temperature stability, and a narrower emission line. A further enhancement in the density of the band-edge states and an associated reduction in the lasing threshold are in principle possible using quantum wires and quantum dots (QDs), in which the confinement is in two and three dimensions, respectively. In very small dots, the spacing of the electronic states is much greater than the available thermal energy (strong confinement), inhibiting thermal depopulation of the lowest electronic states. This effect should result in a lasing threshold that is temperatureinsensitive at an excitation level of only 1 electron-hole (e-h) pair per dot on average. Additionally, QDs in the strongconfinement regime have an emission wavelength that is a pronounced function of size, adding the advantage of continuous spectral tunability over a wide energy range simply by changing the size of the dots.


2013 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Shamloo ◽  
A.P. Sowa

AbstractWe consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab initio simulation. To this end we propose a novel Hamiltonian that captures the dynamics of a bi-partite quantum system, wherein the interaction is described via a Wiener-Hopf type operator. We subsequently describe the density of states function and derive the electronic properties of the underlying system. The analysis seems to capture a plethora of electronic profiles, and reveals the versatility of the proposed framework for double-Qdot channel modelling.


Sign in / Sign up

Export Citation Format

Share Document