Human Erythrocyte D-Aspartyl/L-Isoaspartyl Methyltransferases: Enzymes that Recognize Age-Damaged Proteins

Author(s):  
Diego Ingrosso ◽  
Steven Clarke
Keyword(s):  
Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.


Author(s):  
S. A. Livesey ◽  
A. A. del Campo ◽  
E. S. Griffey ◽  
D. Ohlmer ◽  
T. Schifani ◽  
...  

The aim of this study is to compare methods of sample preparation for elemental analysis. The model system which is used is the human erythrocyte. Energy dispersive spectroscopic analysis has been previously reported for cryofixed and cryosectioned erythrocytes. Such work represents the reference point for this study. The use of plastic embedded samples for elemental analysis has also been documented. The work which is presented here is based on human erythrocytes which have been either chemically fixed and embedded or cryofixed and subsequently processed by a variety of techniques which culminated in plastic embedded samples.Heparinized and washed erythrocytes were prepared by the following methods for this study :(1). Chemical fixation in 4% paraformaldehyde/0.25% glutaraldehyde/0.2 M sucrose in 0.1 M Na cacodylate, pH 7.3 for 30 min, followed by ethanol dehydration, infiltration and embedding in Lowicryl K4M at -20° C.


Diabetes ◽  
1986 ◽  
Vol 35 (1) ◽  
pp. 101-105 ◽  
Author(s):  
G. M. Ward ◽  
L. C. Harrison

Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 305-312 ◽  
Author(s):  
HR Prasanna ◽  
HH Edwards ◽  
DR Phillips

Abstract This study described the binding of platelet plasma membranes to either control or thrombin-activated platelets. Glycoproteins in plasma membranes isolated from human platelets were labeled by oxidation with periodate followed by reduction with [3H]NaBH4. Labeled membranes were incubated with either control or thrombin-activated platelets. The amount of membranes bound was measured by separating platelets with bound membranes from solution by rapid centrifugation through 27% sucrose and determining the amount of radioactivity associated with platelets. Five- to sevenfold more membranes bound to thrombin- activated platelets than to control platelets. This enhanced binding of labeled membranes was completely inhibited by an excess of unlabeled platelet membranes. Human erythrocyte membranes had little affinity for either washed or thrombin-activated platelets and therefore did not compete for platelet-membrane binding. Binding of platelet membranes to thrombin-treated platelets was inhibited by prior incubation of the platelets with PGI2 suggesting that the enhanced binding of membranes was to activated platelets. This study demonstrates that the purified platelet membranes have functional sites that can mediate membrane binding to platelets and that quantitation of membrane binding appears to reflect the increased aggregation capability of activated platelets.


Sign in / Sign up

Export Citation Format

Share Document