The YPT Gene Family of Schizosaccharomyces Pombe

Author(s):  
John Armstrong ◽  
Erica Fawell ◽  
Sally Hook ◽  
Alison Pidoux ◽  
Mark Craighead
1989 ◽  
Vol 16 (5-6) ◽  
pp. 361-367 ◽  
Author(s):  
Klaus B. Gatermann ◽  
Christine Teletski ◽  
Thomas Gross ◽  
Norbert F. K�ufer

1990 ◽  
Vol 10 (5) ◽  
pp. 2341-2348 ◽  
Author(s):  
M Beltrame ◽  
M E Bianchi

We have cloned the genes for small acidic ribosomal proteins (A-proteins) of the fission yeast Schizosaccharomyces pombe. S. pombe contains four transcribed genes for small A-proteins per haploid genome, as is the case for Saccharomyces cerevisiae. In contrast, multicellular eucaryotes contain two transcribed genes per haploid genome. The four proteins of S. pombe, besides sharing a high overall similarity, form two couples of nearly identical sequences. Their corresponding genes have a very conserved structure and are transcribed to a similar level. Surprisingly, of each couple of genes coding for nearly identical proteins, one is essential for cell growth, whereas the other is not. We suggest that the unequal importance of the four small A-proteins for cell survival is related to their physical organization in 60S ribosomal subunits.


1990 ◽  
Vol 10 (5) ◽  
pp. 2341-2348
Author(s):  
M Beltrame ◽  
M E Bianchi

We have cloned the genes for small acidic ribosomal proteins (A-proteins) of the fission yeast Schizosaccharomyces pombe. S. pombe contains four transcribed genes for small A-proteins per haploid genome, as is the case for Saccharomyces cerevisiae. In contrast, multicellular eucaryotes contain two transcribed genes per haploid genome. The four proteins of S. pombe, besides sharing a high overall similarity, form two couples of nearly identical sequences. Their corresponding genes have a very conserved structure and are transcribed to a similar level. Surprisingly, of each couple of genes coding for nearly identical proteins, one is essential for cell growth, whereas the other is not. We suggest that the unequal importance of the four small A-proteins for cell survival is related to their physical organization in 60S ribosomal subunits.


2019 ◽  
Author(s):  
María Angélica Bravo Núñez ◽  
Ibrahim M. Sabbarini ◽  
Michael T. Eickbush ◽  
Yue Liang ◽  
Jeffrey J. Lange ◽  
...  

AbstractMeiotic drivers are selfish genetic loci that force their transmission into more than 50% of the viable gametes made by heterozygotes. Meiotic drivers are known to cause infertility in a diverse range of eukaryotes and are predicted to affect the evolution of genome structure and meiosis. The wtf gene family of Schizosaccharomyces pombe includes both meiotic drivers and drive suppressors and thus offers a tractable model organism to study drive systems. Currently, only a handful of wtf genes have been functionally characterized and those genes only partially reflect the diversity of the wtf gene family. In this work, we functionally test 22 additional wtf genes. We identify eight new drivers that share between 30-90% amino acid identity with previously characterized drivers. Despite the vast divergence between these genes, they generally drive into >85% gametes when heterozygous. We also find three new wtf genes that suppress drive, including two that also act as autonomous drivers. Additionally, we find that wtf genes do not underlie a weak (64%) transmission bias caused by a locus or loci on chromosome 1. Finally, we find that some Wtf proteins have expression or localization patterns that are distinct from the poison and antidote proteins encoded by drivers and suppressors, suggesting some wtf genes may have non-meiotic drive functions. Overall, this work expands our understanding of the wtf gene family and the burden selfish driver genes impose on S. pombe.Article SummaryDuring gametogenesis, the two gene copies at a given locus, known as alleles, are each transmitted to 50% of the gametes (e.g. sperm). However, some alleles cheat so that they are found in more than the expected 50% of gametes, often at the expense of fertility. This selfish behavior is known as meiotic drive. Some members of the wtf gene family in the fission yeast, Schizosaccharomyces pombe, kill the gametes (spores) that do not inherit them, resulting in meiotic drive favoring the wtf allele. Other wtf genes act as suppressors of drive. However, the wtf gene family is diverse and only a small subset of the genes has been characterized. Here we analyze the functions of other members of this gene family and found eight new drivers as well as three new suppressors of drive. Surprisingly, we find that drive is relatively insensitive to changes in wtf gene sequence as highly diverged wtf genes execute gamete killing with similar efficiency. Finally, we also find that the expression and localization of some Wtf proteins are distinct from those of known drivers and suppressors, suggesting that these proteins may have non-meiotic drive functions.


2020 ◽  
Vol 52 (5) ◽  
Author(s):  
De-Gong Wu ◽  
Qiu-Wen Zhan ◽  
Hai-Bing Yu ◽  
Bao-Hong Huang ◽  
Xin-Xin Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document