Group Symmetries with R-Invariance

Author(s):  
R. E. Marshak
Keyword(s):  
Author(s):  
Rob. W. Glaisher ◽  
A.E.C. Spargo

Images of <11> oriented crystals with diamond structure (i.e. C,Si,Ge) are dominated by white spot contrast which, depending on thickness and defocus, can correspond to either atom-pair columns or tunnel sites. Olsen and Spence have demonstrated a method for identifying the correspondence which involves the assumed structure of a stacking fault and the preservation of point-group symmetries by correctly aligned and stigmated images. For an intrinsic stacking fault, a two-fold axis lies on a row of atoms (not tunnels) and the contrast (black/white) of the atoms is that of the {111} fringe containing the two-fold axis. The breakdown of Friedel's law renders this technique unsuitable for the related, but non-centrosymmetric binary compound sphalerite materials (e.g. GaAs, InP, CdTe). Under dynamical scattering conditions, Bijvoet related reflections (e.g. (111)/(111)) rapidly acquire relative phase differences deviating markedly from thin-crystal (kinematic) values, which alter the apparent location of the symmetry elements needed to identify the defect.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Matthew Yu

Abstract We investigate the interactions of discrete zero-form and one-form global symmetries in (1+1)d theories. Focus is put on the interactions that the symmetries can have on each other, which in this low dimension result in 2-group symmetries or symmetry fractionalization. A large part of the discussion will be to understand a major feature in (1+1)d: the multiple sectors into which a theory decomposes. We perform gauging of the one-form symmetry, and remark on the effects this has on our theories, especially in the case when there is a global 2-group symmetry. We also implement the spectral sequence to calculate anomalies for the 2-group theories and symmetry fractionalized theory in the bosonic and fermionic cases. Lastly, we discuss topological manipulations on the operators which implement the symmetries, and draw insights on the (1+1)d effects of such manipulations by coupling to a bulk (2+1)d theory.


Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 541 ◽  
Author(s):  
Venkata Kota ◽  
Narendra Chavda

Embedded ensembles or random matrix ensembles generated by k-body interactions acting in many-particle spaces are now well established to be paradigmatic models for many-body chaos and thermalization in isolated finite quantum (fermion or boson) systems. In this article, briefly discussed are (i) various embedded ensembles with Lie algebraic symmetries for fermion and boson systems and their extensions (for Majorana fermions, with point group symmetries etc.); (ii) results generated by these ensembles for various aspects of chaos, thermalization and statistical relaxation, including the role of q-hermite polynomials in k-body ensembles; and (iii) analyses of numerical and experimental data for level fluctuations for trapped boson systems and results for statistical relaxation and decoherence in these systems with close relations to results from embedded ensembles.


Author(s):  
Magdolna Hargittai ◽  
István Hargittai
Keyword(s):  

2009 ◽  
Vol 24 (25n26) ◽  
pp. 4623-4641 ◽  
Author(s):  
MICHELE ARZANO ◽  
DARIO BENEDETTI

Noncommutative quantum field theories and their global quantum group symmetries provide an intriguing attempt to go beyond the realm of standard local quantum field theory. A common feature of these models is that the quantum group symmetry of their Hilbert spaces induces additional structure in the multiparticle states which reflects a nontrivial momentum-dependent statistics. We investigate the properties of this "rainbow statistics" in the particular context of κ-quantum fields and discuss the analogies/differences with models with twisted statistics.


Sign in / Sign up

Export Citation Format

Share Document