A Time-Delay Analog for Thermal-Acoustic Oscillations

1995 ◽  
pp. 364-367
Author(s):  
R. S. Thurston
2019 ◽  
Vol 632 ◽  
pp. A91 ◽  
Author(s):  
Nikki Arendse ◽  
Adriano Agnello ◽  
Radosław J. Wojtak

Context. The matter sound horizon can be infered from the cosmic microwave background within the Standard Model. Independent direct measurements of the sound horizon are then a probe of possible deviations from the Standard Model. Aims. We aim at measuring the sound horizon rs from low-redshift indicators, which are completely independent of CMB inference. Methods. We used the measured product H(z)rs from baryon acoustic oscillations (BAO) together with supernovae Ia to constrain H(z)/H0 and time-delay lenses analysed by the H0LiCOW collaboration to anchor cosmological distances (∝ H0−1). Additionally, we investigated the influence of adding a sample of quasars with higher redshift with standardisable UV-Xray luminosity distances. We adopted polynomial expansions in H(z) or in comoving distances so that our inference was completely independent of any cosmological model on which the expansion history might be based. Our measurements are independent of Cepheids and systematics from peculiar motions to within percent-level accuracy. Results. The inferred sound horizon rs varies between (133 ± 8) Mpc and (138 ± 5) Mpc across different models. The discrepancy with CMB measurements is robust against model choice. Statistical uncertainties are comparable to systematics. Conclusions. The combination of time-delay lenses, supernovae, and BAO yields a distance ladder that is independent of cosmology (and of Cepheid calibration) and a measurement of rs that is independent of the CMB. These cosmographic measurements are then a competitive test of the Standard Model, regardless of the hypotheses on which the cosmology is based.


2019 ◽  
Vol 498 (1) ◽  
pp. 1420-1439 ◽  
Author(s):  
Kenneth C Wong ◽  
Sherry H Suyu ◽  
Geoff C-F Chen ◽  
Cristian E Rusu ◽  
Martin Millon ◽  
...  

ABSTRACT We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analysed blindly with respect to the cosmological parameters. In a flat Λ cold dark matter (ΛCDM) cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$, a $2.4{{\ \rm per\ cent}}$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73 to 78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints.


2020 ◽  
Vol 639 ◽  
pp. A57 ◽  
Author(s):  
Nikki Arendse ◽  
Radosław J. Wojtak ◽  
Adriano Agnello ◽  
Geoff C.-F. Chen ◽  
Christopher D. Fassnacht ◽  
...  

Context. Persistent tension between low-redshift observations and the cosmic microwave background radiation (CMB), in terms of two fundamental distance scales set by the sound horizon rd and the Hubble constant H0, suggests new physics beyond the Standard Model, departures from concordance cosmology, or residual systematics. Aims. The role of different probe combinations must be assessed, as well as of different physical models that can alter the expansion history of the Universe and the inferred cosmological parameters. Methods. We examined recently updated distance calibrations from Cepheids, gravitational lensing time-delay observations, and the tip of the red giant branch. Calibrating the baryon acoustic oscillations and type Ia supernovae with combinations of the distance indicators, we obtained a joint and self-consistent measurement of H0 and rd at low redshift, independent of cosmological models and CMB inference. In an attempt to alleviate the tension between late-time and CMB-based measurements, we considered four extensions of the standard ΛCDM model. Results. The sound horizon from our different measurements is rd = (137 ± 3stat. ± 2syst.) Mpc based on absolute distance calibration from gravitational lensing and the cosmic distance ladder. Depending on the adopted distance indicators, the combined tension in H0 and rd ranges between 2.3 and 5.1 σ, and it is independent of changes to the low-redshift expansion history. We find that modifications of ΛCDM that change the physics after recombination fail to provide a solution to the problem, for the reason that they only resolve the tension in H0, while the tension in rd remains unchanged. Pre-recombination extensions (with early dark energy or the effective number of neutrinos Neff = 3.24 ± 0.16) are allowed by the data, unless the calibration from Cepheids is included. Conclusions. Results from time-delay lenses are consistent with those from distance-ladder calibrations and point to a discrepancy between absolute distance scales measured from the CMB (assuming the standard cosmological model) and late-time observations. New proposals to resolve this tension should be examined with respect to reconciling not only the Hubble constant but also the sound horizon derived from the CMB and other cosmological probes.


2012 ◽  
Author(s):  
Akio Matsumato ◽  
Ferenc Szidarovsky

2007 ◽  
Vol 38 (1) ◽  
pp. 73-78 ◽  
Author(s):  
V. Lj. Marković ◽  
S. N. Stamenković ◽  
S. R. Gocić ◽  
S. M. Durić
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document