Liquid Temperature Effects on Thermally Influenced Transition Currents of Nb-Alloy Superconducting Solenoids in He I and He II

Author(s):  
T. H. K. Frederking ◽  
C. Linnet
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Pengpeng Wang ◽  
Lan Zhang ◽  
Liquan Wang

This article proposed an analytic and finite element-combined modelling method for the investigation of temperature effects on bolt loads and variation in a bolted flange for subsea pipeline connection. With this method, the preloads of bolt in the bolted flange assembly were investigated under different medium liquid temperatures in the pipeline. The simulation results illustrate that the deviation of bolt loads can be increased due to the medium liquid temperature increasing. The final bolt load deviation increases along with the increasing of the initial deviation of bolt preloads in a constant medium liquid temperature. The final distribution of bolt loads can be affected by the initial condition of the bolts. When bolt preloads are staggered, the variance of the final bolt loads is minimized; when the bolt preloads are axisymmetric, the final bolt load variance is the maximum.


Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document