Strain rate and temperature effects on stress-strain behaviour of cast high alloyed CrMnNi-steel

Author(s):  
L. Krüger ◽  
S. Wolf ◽  
U. Martin ◽  
P. Scheller ◽  
A. Jahn ◽  
...  
2017 ◽  
Vol 31 (16) ◽  
pp. 1782-1795 ◽  
Author(s):  
Shiddartha Paul ◽  
Mohammad Motalab ◽  
Md. Ali Zobayer ◽  
Md. Jakir Hossain

1999 ◽  
Vol 36 (4) ◽  
pp. 736-745 ◽  
Author(s):  
Jian-Hua Yin ◽  
James Graham

This paper presents a new framework for elastic viscoplastic (EVP) constitutive modelling. In developing the model, a general one-dimensional elastic viscoplastic (1D EVP) relationship is first derived for isotropic stressing conditions using an "equivalent-time" concept. This 1D EVP model is then generalized into a three-dimensional EVP model based on Modified Cam-Clay and viscoplasticity. Fitting functions are proposed for fitting data when model parameters are being determined. Using these functions, a specific EVP model is developed which describes the time-dependent stress-strain behaviour of soils under triaxial stress states. This model has been calibrated using data from a densely compacted sand-bentonite mixture. The calibrated model is used to compute time-dependent (or strain rate dependent) stress-strain curves from a multistage shear creep test and a step-changed, constant strain rate undrained triaxial compression test. Predictions from the EVP model are in general agreement with measured values. It is demonstrated that the model can simulate accelerating creep when deviator stresses are close to the shear strength envelope in a q creep test. It can also model the behaviour in unloading-reloading and relaxation. Limitations and possible improvements are also indicated.Key words: equivalent time, stress-strain, time dependent, elastic, viscoplastic, triaxial.


Author(s):  
Mahesh Kumar Gupta ◽  
Akash Shankhdhar ◽  
Abhinav Kumar ◽  
Anant Vermon ◽  
Aayush Kumar Singh ◽  
...  

Author(s):  
Jun Xing ◽  
Hanlin Ding ◽  
Guohui Zhu ◽  
Fan Li ◽  
Junliang Li

Abstract The critical strain for dynamic recrystallization (DRX) is most important in designing rolling schedules for the refinement of grain size by boundary-induced transformation mechanisms. Modeling of the critical strain for DRX from the stress-strain curves obtained from hot compression was physically built in this paper. The stress-strain behaviour of materials during hot deformation should be a combination of work-hardening and recrystallization softening. Before DRX occurred, the stress-strain behaviours could be described by a constitutive equation in which basic strain hardening and the effect of strain rate and temperature on stress-strain behaviour are included. Once DRX was promoted, obvious deviation between the experimental and calculated stress-strain curves appeared, which denoted the critical strain for DRX. The modeling in this work could be used not only to accurately calculate the critical strain for DRX but also to analyze the dynamic softening behaviours during hot deformation. To validate the calculated results, the stress-strain database was analyzed in the H beam sample deformed at 1000C with a strain rate of 0.1/s, and a critical strain of 0.22 was obtained by this novel method as an example. The calculated result is in good agreement with the experimental data obtained by micrographical observations.


Sign in / Sign up

Export Citation Format

Share Document