A Direct Correspondence between Spectroscopic Measurements and Electrochemical Data and Theories

Ionic Liquids ◽  
1981 ◽  
pp. 79-96
Author(s):  
Trevor R. Griffiths ◽  
Ranmuthu H. Wijayanayake
1983 ◽  
Vol 48 (11) ◽  
pp. 3202-3208 ◽  
Author(s):  
Zdeněk Musil ◽  
Vladimír Pour

The kinetics of the reduction of nitrogen oxide by carbon monoxide on CuO/Al2O3 catalyst (8.36 mass % CuO) were determined at temperatures between 413 and 473 K. The reaction was found to be first order in NO and zero order in CO. The observed kinetics are consistent with a rate equation derived from a mechanism proposed on the basis of IR spectroscopic measurements.


1975 ◽  
Vol 29 (6) ◽  
pp. 496-500 ◽  
Author(s):  
D. Kember ◽  
N. Sheppard

Infrared emission spectra from metal samples with oxide surface layers are shown to be very advantageously studied using the spectrum-ratioing facility of a recording infrared interferometer. The emission from a given sample is ratioed against that from a black-body emitter at the same temperature so as to give emittance as a function of wavenumber directly. This method has very useful application to irregularly shaped metal emitters. In the absence of selective reflection there is a direct correspondence between emission and absorption spectra for thin layers of an emitting substance. However, the presence of selective reflection leads to reduced emission and to considerable differences in the appearance of “absorption” and emission spectra in regions of strong absorption. Emission spectra obtained from copper plates heated, above 150°C, for different periods in air are shown clearly to indicate the presence of cuprous, Cu(I), and cupric, Cu(II), oxides in the surface layer.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 987-991 ◽  
Author(s):  
Gilean A T McVean

Abstract The degree of association between alleles at different loci, or linkage disequilibrium, is widely used to infer details of evolutionary processes. Here I explore how associations between alleles relate to properties of the underlying genealogy of sequences. Under the neutral, infinite-sites assumption I show that there is a direct correspondence between the covariance in coalescence times at different parts of the genome and the degree of linkage disequilibrium. These covariances can be calculated exactly under the standard neutral model and by Monte Carlo simulation under different demographic models. I show that the effects of population growth, population bottlenecks, and population structure on linkage disequilibrium can be described through their effects on the covariance in coalescence times.


2020 ◽  
pp. 1-14
Author(s):  
Siqiang Chen ◽  
Masahiro Toyoura ◽  
Takamasa Terada ◽  
Xiaoyang Mao ◽  
Gang Xu

A textile fabric consists of countless parallel vertical yarns (warps) and horizontal yarns (wefts). While common looms can weave repetitive patterns, Jacquard looms can weave the patterns without repetition restrictions. A pattern in which the warps and wefts cross on a grid is defined in a binary matrix. The binary matrix can define which warp and weft is on top at each grid point of the Jacquard fabric. The process can be regarded as encoding from pattern to textile. In this work, we propose a decoding method that generates a binary pattern from a textile fabric that has been already woven. We could not use a deep neural network to learn the process based solely on the training set of patterns and observed fabric images. The crossing points in the observed image were not completely located on the grid points, so it was difficult to take a direct correspondence between the fabric images and the pattern represented by the matrix in the framework of deep learning. Therefore, we propose a method that can apply the framework of deep learning viau the intermediate representation of patterns and images. We show how to convert a pattern into an intermediate representation and how to reconvert the output into a pattern and confirm its effectiveness. In this experiment, we confirmed that 93% of correct pattern was obtained by decoding the pattern from the actual fabric images and weaving them again.


2012 ◽  
Vol 45 (6) ◽  
pp. 1261-1269 ◽  
Author(s):  
Olaf J. Borkiewicz ◽  
Badri Shyam ◽  
Kamila M. Wiaderek ◽  
Charles Kurtz ◽  
Peter J. Chupas ◽  
...  

This article presents a versatile easy-to-use electrochemical cell suitable forin operando,in situmeasurements of battery materials during electrochemical cycling using a variety of X-ray techniques. Argonne's multi-purposein situX-ray (AMPIX) cell provides reliable electrochemical cycling over extended periods owing to the uniform stack pressure applied by rigid X-ray windows and the formation of a high-fidelity hermetic seal. The suitability of the AMPIX cell for a broad range of synchrotron-based X-ray scattering and spectroscopic measurements has been demonstrated with studies at eight Advanced Photon Source beamlines to date. Compatible techniques include pair distribution function analysis, high-resolution powder diffraction, small-angle scattering and X-ray absorption spectroscopy. These techniques probe a broad range of electronic, structural and morphological features relevant to battery materials. The AMPIX cell enables experiments providing greater insight into the complex processes that occur in operating batteries by allowing the electrochemical reactions to be probed at fine reaction intervals with greater consistency (within the charge–discharge cycle and between different methodologies) with potential for new time-dependent kinetic studies or studies of transient species. Representative X-ray and electrochemical data to demonstrate the functionality of the AMPIX cell are presented.


Sign in / Sign up

Export Citation Format

Share Document