Three Dimensional Shear Stress Distribution around Small Atherosclerotic Plaques with Steady and Unsteady Flow

1990 ◽  
pp. 173-182 ◽  
Author(s):  
Takami Yamaguchi ◽  
Atushi Nakano ◽  
Sotaro Hanai
2015 ◽  
Vol 1088 ◽  
pp. 758-762
Author(s):  
Xiao Cong He

This paper deals with the stress discontinuities in shear stress distribution of adhesive joints. The three-dimensional finite element analysis (FEA) software was used to model the joints and predict the shear stress distribution along the whole beam. The FEA results indicated that there are stress discontinuities existing in the shear stress distribution within adhesive layer and adherends at the lower interface and the upper interface of the boded section. The numerical values of the shear stress concentration at key locations of the joints and the stress concentration ratio are discussed.


Author(s):  
Bhaskar Rao Tulimilli ◽  
Steven A. Lottes ◽  
Pradip Majumdar ◽  
Milivoje Kostic

A three-dimensional stream bed scour modeling methodology was developed using well-benchmarked commercial Computational Fluid Dynamics (CFD) software to compute the bed shear stress distribution used to calculate bed displacements and to re-mesh the computational domain as the bed is displaced. This study extends a previously developed two-dimensional iterative scouring procedure to predict the final shape and size of the scour-hole under pressure-scour flow conditions for flooded bridge decks using commercial CFD software. The current approach uses single phase flow models with an assumed flat water surface using a symmetric slip top boundary to simulate a free-surface flow condition, quasi-steady simulation to obtain the bed shear, and a moving boundary formulation based on an empirical correlation for critical shear stress to iteratively deform the bed under supercritical shear conditions until an equilibrium scour condition is obtained. The model solves the flow field using Reynolds Averaged Navier-Stokes (RANS) equations and the high Reynolds number k–epsilon turbulence model using the commercial CFD software STAR-CD. A Bash script was developed to use a Python script to compute bed displacements from the computed shear stress distribution and generate a STAR-CD processor command file to displace the bed followed by a step using the STAR-CCM+ software to remesh the domain as the bed is displaced and bed shear distribution is recomputed in an iterative procedure until the equilibrium bed contour is reached. Simulations were performed for different inundation ratios and for mean sand diameters of 1 mm and 2 mm. The model agrees reasonably well with limited experimental data for equilibrium scour shape and size with fully submerged cases compared to the cases where the bridge deck is partially submerged. This developed three-dimensional CFD scour computation procedure provides a basis for testing of additional scour related physical models while also providing an evaluation tool that can be used immediately by engineers engaged in scour risk analysis and assessment.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Babak Lashkar-Ara ◽  
Niloofar Kalantari ◽  
Zohreh Sheikh Khozani ◽  
Amir Mosavi

One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.


Sign in / Sign up

Export Citation Format

Share Document