Data Mining for Knowledge Acquisition in Engineering Design

Author(s):  
Yoko Ishino ◽  
Yan Jin
Author(s):  
Eyke Hüllermeier

Tools and techniques that have been developed during the last 40 years in the field of fuzzy set theory (FST) have been applied quite successfully in a variety of application areas. A prominent example of the practical usefulness of corresponding techniques is fuzzy control, where the idea is to represent the input-output behaviour of a controller (of a technical system) in terms of fuzzy rules. A concrete control function is derived from such rules by means of suitable inference techniques. While aspects of knowledge representation and reasoning have dominated research in FST for a long time, problems of automated learning and knowledge acquisition have more and more come to the fore in recent years. There are several reasons for this development, notably the following: Firstly, there has been an internal shift within fuzzy systems research from “modelling” to “learning”, which can be attributed to the awareness that the well-known “knowledge acquisition bottleneck” seems to remain one of the key problems in the design of intelligent and knowledge-based systems. Secondly, this trend has been further amplified by the great interest that the fields of knowledge discovery in databases (KDD) and its core methodical component, data mining, have attracted in recent years. It is hence hardly surprising that data mining has received a great deal of attention in the FST community in recent years (Hüllermeier, 2005). The aim of this chapter is to give an idea of the usefulness of FST for data mining. To this end, we shall briefly highlight, in the next but one section, some potential advantages of fuzzy approaches. In preparation, the next section briefly recalls some basic ideas and concepts from FST. The style of presentation is purely non-technical throughout; for technical details we shall give pointers to the literature.


2006 ◽  
Vol 44 (14) ◽  
pp. 2689-2694 ◽  
Author(s):  
J.C.-X. Feng ◽  
A. Kusiak

Author(s):  
Conrad S. Tucker ◽  
Harrison M. Kim

The formulation of a product portfolio requires extensive knowledge about the product market space and also the technical limitations of a company’s engineering design and manufacturing processes. A design methodology is presented that significantly enhances the product portfolio design process by eliminating the need for an exhaustive search of all possible product concepts. This is achieved through a decision tree data mining technique that generates a set of product concepts that are subsequently validated in the engineering design using multilevel optimization techniques. The final optimal product portfolio evaluates products based on the following three criteria: (1) it must satisfy customer price and performance expectations (based on the predictive model) defined here as the feasibility criterion; (2) the feasible set of products/variants validated at the engineering level must generate positive profit that we define as the optimality criterion; (3) the optimal set of products/variants should be a manageable size as defined by the enterprise decision makers and should therefore not exceed the product portfolio limit. The strength of our work is to reveal the tremendous savings in time and resources that exist when decision tree data mining techniques are incorporated into the product portfolio design and selection process. Using data mining tree generation techniques, a customer data set of 40,000 responses with 576 unique attribute combinations (entire set of possible product concepts) is narrowed down to 46 product concepts and then validated through the multilevel engineering design response of feasible products. A cell phone example is presented and an optimal product portfolio solution is achieved that maximizes company profit, without violating customer product performance expectations.


2010 ◽  
Vol 97-101 ◽  
pp. 3341-3344
Author(s):  
Dong Bo Wang ◽  
Xiu Tian Yan ◽  
Ning Sheng Guo ◽  
Tao Li

In order to support the dynamic and creative Engineering Design Process (EDP) comprehensively, after a detailed literature review, a multi autonomic objects (AO) flexible workflow is applied into the supporting and management of EDP, its support for decision making, EDP evolution and design activity granularity is explained, finally and most importantly, a genetic algorithm-based AO knowledge learning method is proposed, the algorithm is demonstrated by a MATLAB simulation that it can satisfy the knowledge acquisition in EDP satisfactorily.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242253
Author(s):  
Zhigang Zhou ◽  
Yanyan Liu ◽  
Hao Yu ◽  
Lihua Ren

The aims are to explore the construction of the knowledge management model for engineering cost consulting enterprises, and to expand the application of data mining techniques and machine learning methods in constructing knowledge management model. Through a questionnaire survey, the construction of the knowledge management model of construction-related enterprises and engineering cost consulting enterprises is discussed. First, through the analysis and discussion of ontology-based data mining (OBDM) algorithm and association analysis (Apriori) algorithm, a data mining algorithm (ML-AR algorithm) on account of ontology-based multilayer association and machine learning is proposed. The performance of the various algorithms is compared and analyzed. Second, based on the knowledge management level, analysis and statistics are conducted on the levels of knowledge acquisition, sharing, storage, and innovation. Finally, according to the foregoing, the knowledge management model based on engineering cost consulting enterprises is built and analyzed. The results show that the reliability coefficient of this questionnaire is above 0.8, and the average extracted value is above 0.7, verifying excellent reliability and validity. The efficiency of the ML-AR algorithm at both the number of transactions and the support level is better than the other two algorithms, which is expected to be applied to the enterprise knowledge management model. There is a positive correlation between each level of knowledge management; among them, the positive correlation between knowledge acquisition and knowledge sharing is the strongest. The enterprise knowledge management model has a positive impact on promoting organizational innovation capability and industrial development. The research work provides a direction for the development of enterprise knowledge management and the improvement of innovation ability.


Sign in / Sign up

Export Citation Format

Share Document