Lymphocyte Activation Induced Apoptosis by the APO-1 Cell Surface Receptor

Apoptosis ◽  
1994 ◽  
pp. 237-248
Author(s):  
Peter H. Krammer
2010 ◽  
Vol 427 (2) ◽  
pp. 305-312 ◽  
Author(s):  
Tamar Liron ◽  
Tal Nahari ◽  
Miriam C. Souroujon ◽  
Drorit Neumann

EPO (erythropoietin), the major hormone regulating erythropoiesis, functions via activation of its cell-surface receptor (EPO-R) present on erythroid progenitor cells. One of the most striking properties of EPO-R is its low expression on the cell surface, as opposed to its high intracellular levels. The low cell-surface expression of EPO-R may thus limit the efficacy of EPO that is routinely used to treat primary and secondary anaemia. In a recent study [Nahari, Barzilay, Hirschberg and Neumann (2008) Biochem. J. 410, 409–416] we have shown that insertion of an NPVY sequence into the intracellular domain of EPO-R increases its cell-surface expression. In the present study we demonstrate that this NPVY EPO-R insert has a selective effect on EPO-mediated downstream signalling in Ba/F3 cells expressing this receptor (NPVY-EPO-R). This is monitored by increased phosphorylation of the NPVY-EPO-R (on Tyr479), Akt, JAK2 (Janus kinase 2) and ERK1/2 (extracellular-signal-regulated kinase 1/2), but not STAT5 (signal transducer and activator of transcription 5), as compared with cells expressing wild-type EPO-R. This enhanced signalling is reflected in augmented proliferation at low EPO levels (0.05 units/ml) and protection against etoposide-induced apoptosis. Increased cell-surface levels of NPVY-EPO-R are most probably not sufficient to mediate these effects as the A234E-EPO-R mutant that is expressed at high cell-surface levels does not confer an augmented response to EPO. Taken together, we demonstrate that insertion of an NPVY sequence into the cytosolic domain of the EPO-R confers not only improved maturation, but also selectively affects EPO-mediated signalling resulting in an improved responsiveness to EPO reflected in cell proliferation and protection against apoptosis.


2001 ◽  
Vol 120 (5) ◽  
pp. A18-A19
Author(s):  
B DIECKGRAEFE ◽  
C HOUCHEN ◽  
H ZHANG

1985 ◽  
Vol 248 (6) ◽  
pp. H907-H913 ◽  
Author(s):  
L. J. Heller ◽  
R. A. Olsson

This study was designed to characterize adenosine's negative chronotropic effect on ventricular pacemakers. The spontaneous beating rate of isolated, isovolumic rat ventricular preparations perfused with Krebs-Henseleit solution decreased as the adenosine concentration was increased [log M effective concentration 50% (EC50) = -5.22 +/- 0.17]. The lack of effect of propranolol or atropine on this adenosine response eliminates the involvement of endogenous neurotransmitters. Support for the involvement of an external cell surface receptor was provided by findings that theophylline and 8-(4-sulfophenyl)theophylline, an analogue thought to act solely at the cell surface, significantly increased the adenosine log M EC50 to -3.94 +/- 0.22 and -3.61 +/- 0.22, respectively. An increase in spontaneous beating rate induced by theophylline, but not by its analogue, was blocked by the addition of propranolol. The relative chronotropic potency of the adenosine analogues R-PIA, S-PIA, and NECA suggests that the cell surface receptors may be of the Ri type. The negative chronotropic effects of adenosine and its analogues occurred at concentrations that had no effect on the developed pressure of the paced preparation. Electrocardiographic evaluations indicate that at high agonist concentrations, there was an abrupt alteration in electrical properties of the preparation, which could be blocked by theophylline and its analogue.


1991 ◽  
Vol 266 (19) ◽  
pp. 12329-12336
Author(s):  
S.W. Hall ◽  
J.E. Humphries ◽  
S.L. Gonias

1979 ◽  
Vol 254 (9) ◽  
pp. 3194-3200
Author(s):  
A. Kulczycki ◽  
B L Hempstead ◽  
S L Hofmann ◽  
E W Wood ◽  
C W Parker

1987 ◽  
Vol 84 (6) ◽  
pp. 1669-1673 ◽  
Author(s):  
L. S. Park ◽  
D. Friend ◽  
K. Grabstein ◽  
D. L. Urdal

Sign in / Sign up

Export Citation Format

Share Document