Electronic and Optical Properties of Silicon Dangling-Bond Defects at the Si-Sio2 Interface

Author(s):  
N. M. Johnson
1986 ◽  
Vol 70 ◽  
Author(s):  
S. Y. Lin ◽  
G. Lucovsky ◽  
S. Guha ◽  
J. S. Payson

ABSTRACTThis paper describes a calculation of twofold-coordinated (or divalent) intrinsic bonding defects in a-SiSn:H alloy films. The motivation for this study comes from experimental studies of the electronic and optical properties of a- Si, Sn:H alloys which indicate dramatic changes in the electronic and photoelectronic properties for small concentrations of Sn (approximately 1–2 at. %). We have used a cluster Bethe lattice structural model and an empirical tight-binding Hamiltonian to investigate the electronic properties of tetrahedrally bonded Sn atoms and neutral Sn defect centers (T2o and T3o) and in an a-Si host. We find that: (C) fourfoldcoordinated Sn atoms simply promote a reduction in the optical bandgap, with the energy gap disappearing for Sn concentrations of about 20 to 30 at. %; (2) neutral dangling bonds (T2o) or threefold-coordinated Sn atoms generate a localized state in the gap that is iower in energy than the corresponding neutral Si atom dangling bond; and (3) divalent (T2o) or twofold-coordinated Sn atoms give rise to two states in the gap, an occupied state that is lower in energy that either the Sn or Si dangling bond, and an empty state that is just below the conduction band edge. We show that the electronic and optical properties of the a-SiSn:H alloys can be understood in terms of a model in which there are relatively high densities of unhydrogenated Sn divalent sites and/or Sn dangling bonds.


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-529-C5-532 ◽  
Author(s):  
F. LARUELLE ◽  
V. THIERRY-MIEG ◽  
M. C. JONCOUR ◽  
B. ETIENNE

1997 ◽  
Vol 167 (5) ◽  
pp. 558 ◽  
Author(s):  
Nikolai A. Gippius ◽  
V.D. Kulakovskii ◽  
Sergei G. Tikhodeev

2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


2020 ◽  
Vol 32 (33) ◽  
pp. 335001
Author(s):  
Zhizheng Sun ◽  
Hongfei Huang ◽  
Wei Xun ◽  
Shanjin Shi ◽  
Xiang Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document