conduction band edge
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 40)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Yu Jie Zheng ◽  
Qi Zhang ◽  
Omololu Odunmbaku ◽  
Zeping Ou ◽  
Meng Li ◽  
...  

Abstract Utilizing first-principles calculations, charge transfer doping process of single layer tin selenide (SL-SnSe) via the surface adsorption of various organic molecules was investigated. Effective p-type SnSe, with carrier concentration exceeding 3.59×1013 cm-2, was obtained upon adsorption of tetracyanoquinodimethane (TCNQ) or 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) on SL-SnSe due to their lowest unoccupied molecular orbital (LUMO) acting as shallow acceptor states. While we could not obtain effective n-type SnSe through adsorption of tetrathiafulvalene (TTF) or 1,4,5,8-tetrathianaphthalene (TTN) on pristine SnSe due to their highest occupied molecular orbitals (HOMO) being far from the conduction band edge of SnSe, this disadvantageous situation can be amended by the introduction of an external electric field perpendicular to the monolayer surface. It is found that Snvac will facilitate charge transfer from TTF to SnSe through introducing an unoccupied gap state just above the HOMO of TTF, thereby partially compensating for the p-type doping effect of Snvac. Our results show that both effective p-type and n-type SnSe can be obtained and tuned by charge transfer doping, which is necessary to promote its applications in nanoelectronics, thermoelectrics and optoelectronics.


Inorganics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 62
Author(s):  
Hua Guo ◽  
Aleksander Jaworski ◽  
Zheng Chen ◽  
Can Lu ◽  
Adam Slabon ◽  
...  

We investigated the nitridation of reduced BaTiO3, BaTiO2.60H0.08, corresponding to an oxyhydride with a large concentration of O defects (>10%). The material is readily nitrided under flowing N2 gas at temperatures between 400 and 450 °C to yield oxynitrides BaTiO2.6Nx (x = 0.2−0.22) with a slightly tetragonally distorted perovskite structure, a ≈ 4.01 and c ≈ 4.02 Å, and Ti partially remaining in the oxidation state III. The tetragonal structure was confirmed from Raman spectroscopy. 14N MAS NMR spectroscopy shows a single resonance at 270 ppm, which is typical for perovskite transition metal oxynitrides. However, largely different signal intensity for materials with very similar N content suggests N/O/vacancy ordering when prolonging nitridation times to hours. Diffuse reflectance UV-VIS spectroscopy shows a reduction of the intrinsic band gap to 2.4–2.45 eV compared to BaTiO3 (~3.2 eV). Mott-Schottky measurements confirm n-type conductivity and reveal a slight negative shift of the conduction band edge from –0.59 V (BaTiO3) to ~–0.65 eV.


2021 ◽  
Vol 2 (3) ◽  
pp. 312-323
Author(s):  
Esat Pehlivan ◽  
Claes G. Granqvist ◽  
Gunnar A. Niklasson

Tungsten oxide is a widely used electrochromic material with important applications in variable-transmittance smart windows as well as in other optoelectronic devices. Here we report on electrochemical impedance spectroscopy applied to hydrous electrochromic tungsten oxide films in a wide range of applied potentials. The films were able to reversibly bleach and color upon electrochemical cycling. Interestingly, the bleaching potential was found to be significantly higher than in conventional non-hydrous tungsten oxide films. Impedance spectra at low potentials showed good agreement with anomalous diffusion models for ion transport in the films. At high potentials, where little ion intercalation takes place, it seems that parasitic side reactions influence the spectra. The potential dependence of the chemical capacitance, as well as the ion diffusion coefficient, were analyzed. The chemical capacitance is discussed in terms of the electron density of states in the films and evidence was found for a band tail extending below the conduction band edge.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 542
Author(s):  
Falko Schmidt ◽  
Agnieszka L. Kozub ◽  
Uwe Gerstmann ◽  
Wolf Gero Schmidt ◽  
Arno Schindlmayr

Lithium niobate (LiNbO3), a material frequently used in optical applications, hosts different kinds of polarons that significantly affect many of its physical properties. In this study, a variety of electron polarons, namely free, bound, and bipolarons, are analyzed using first-principles calculations. We perform a full structural optimization based on density-functional theory for selected intrinsic defects with special attention to the role of symmetry-breaking distortions that lower the total energy. The cations hosting the various polarons relax to a different degree, with a larger relaxation corresponding to a larger gap between the defect level and the conduction-band edge. The projected density of states reveals that the polaron states are formerly empty Nb 4d states lowered into the band gap. Optical absorption spectra are derived within the independent-particle approximation, corrected by the GW approximation that yields a wider band gap and by including excitonic effects within the Bethe–Salpeter equation. Comparing the calculated spectra with the density of states, we find that the defect peak observed in the optical absorption stems from transitions between the defect level and a continuum of empty Nb 4d states. Signatures of polarons are further analyzed in the reflectivity and other experimentally measurable optical coefficients.


2021 ◽  
Author(s):  
Szymon Wojtyła ◽  
Tomasz Baran

Abstract Conduction band potential is one of the most crucial physicochemical properties of semiconductor towards photocatalytic and photoelectrochemical aplications. Inexpensive home-made Arduino devices is proposed for determination of flat band potential, based on the well-established method: open-circuit photovoltage measurements. To verify proposed measurement procedure, series of titanates has been prepared by a straightforward hydrothermal procedure and characterized – band structure of materials has been determined, in terms of band gap energy and conduction band edge potential. Finally we demonstrated the photocatalytic formation of superoxide anion radical. Interestingly, the efficiency of O2-• can be correlated, in part, with the potential of conduction band edge. Photocatalyst characterized by particularly low potential of conduction band edge can generate the superoxide anion radical with highest efficiency.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 407
Author(s):  
Adam Glinka ◽  
Jacek Kubicki ◽  
Marcin Ziółek

Electron transfer dynamics in dye sensitized solar cells (DSSCs) employing triphenylamine Y123 dye were investigated by means of femtosecond broadband transient absorption spectroscopy in the visible and mid-IR range of detection. The electron injection process to the titania conduction band was found to appear biphasically with the time constant of the first component within 350 fs and that of the second component between 80 and 95 ps. Subsequently, the effects of continuous irradiation on the ultrafast and fast electron transfer processes were studied in the systems comprising Y123 dye or carbazole MK2 dye in combination with cobalt- or copper-based redox mediators: [Co(bpy)3](B(CN)4)2/3 (bpy = 2,2′-bipyridine) or [Cu(tmby)2](TFSI)1/2 (tmby = 4,4′,6,6′ tetramethyl-2,2′-bipyridine, TFSI = bis(trifluoromethane)sulfonamide). We have found that the steady-state illumination led to acceleration of the electron injection process due to the lowering of titania conduction band edge energy. Moreover, we have observed that the back electron transfer to the oxidized dye was suppressed. These changes in the initial (up to 3 ns) charge separation efficiency were directly correlated with the photocurrent enhancement.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Bum-Kyu Kim ◽  
Tae-Hyung Kim ◽  
Dong-Hwan Choi ◽  
Hanul Kim ◽  
Kenji Watanabe ◽  
...  

AbstractThe achievement of ultraclean Ohmic van der Waals (vdW) contacts at metal/transition-metal dichalcogenide (TMDC) interfaces would represent a critical step for the development of high-performance electronic and optoelectronic devices based on two-dimensional (2D) semiconductors. Herein, we report the fabrication of ultraclean vdW contacts between indium (In) and molybdenum disulfide (MoS2) and the clarification of the atomistic origins of its Ohmic-like transport properties. Atomically clean In/MoS2 vdW contacts are achieved by evaporating In with a relatively low thermal energy and subsequently cooling the substrate holder down to ~100 K by liquid nitrogen. We reveal that the high-quality In/MoS2 vdW contacts are characterized by a small interfacial charge transfer and the Ohmic-like transport based on the field-emission mechanism over a wide temperature range from 2.4 to 300 K. Accordingly, the contact resistance reaches ~600 Ω μm and ~1000 Ω μm at cryogenic temperatures for the few-layer and monolayer MoS2 cases, respectively. Density functional calculations show that the formation of large in-gap states due to the hybridization between In and MoS2 conduction band edge states is the microscopic origins of the Ohmic charge injection. We suggest that seeking a mechanism to generate strong density of in-gap states while maintaining the pristine contact geometry with marginal interfacial charge transfer could be a general strategy to simultaneously avoid Fermi-level pinning and minimize contact resistance for 2D vdW materials.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ching-Hwa Ho ◽  
Tien-Yao Hsu ◽  
Luthviyah Choirotul Muhimmah

AbstractBand-edge excitons of few-layer nickel phosphorous trisulfide (NiPS3) are characterized via micro-thermal-modulated reflectance (μTR) measurements from 10 to 300 K. Prominent μTR features of the A exciton series and B are simultaneously detected near the band edge of NiPS3. The A exciton series contains two sharp A1 and A2 levels and one threshold-energy-related transition (direct gap, E∞), which are simultaneously detected at the lower energy side of NiPS3. In addition, one broadened B feature is present at the higher energy side of few-layer NiPS3. The A series excitons may correlate with majorly d-to-d transition in the Rydberg series with threshold energy of E∞ ≅ 1.511 eV at 10 K. The binding energy of A1 is about 36 meV, and the transition energy is A1 ≅ 1.366 eV at 300 K. The transition energy of B measured by μTR is about 1.894 eV at 10 K. The excitonic series A may directly transit from the top of valence band to the conduction band of NiPS3, while the B feature might originate from the spin-split-off valence band to the conduction band edge. The direct optical gap of NiPS3 is ~1.402 eV at 300 K, which is confirmed by μTR and transmittance experiments.


Nanoscale ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 5316-5323
Author(s):  
Hyunwoo Kim ◽  
Seunghyun Moon ◽  
Jongwoo Kim ◽  
Sang Hwan Nam ◽  
Dong Hwan Kim ◽  
...  

Plasmonic nanostructures of Au nanotriangles and nanodisks are coupled with few-layer MoS2 inducing photoluminescence (PL) enhancement. The underlying mechanisms were investigated with the experimentally quantified enhancement factors.


Sign in / Sign up

Export Citation Format

Share Document