Periodogram analysis for complex-valued time series

Author(s):  
A. M. Walker
2018 ◽  
Vol 19 (10) ◽  
pp. 3178 ◽  
Author(s):  
Bin Yang ◽  
Yuehui Chen ◽  
Wei Zhang ◽  
Jiaguo Lv ◽  
Wenzheng Bao ◽  
...  

Gene regulatory network (GRN) inference can understand the growth and development of animals and plants, and reveal the mystery of biology. Many computational approaches have been proposed to infer GRN. However, these inference approaches have hardly met the need of modeling, and the reducing redundancy methods based on individual information theory method have bad universality and stability. To overcome the limitations and shortcomings, this thesis proposes a novel algorithm, named HSCVFNT, to infer gene regulatory network with time-delayed regulations by utilizing a hybrid scoring method and complex-valued flexible neural network (CVFNT). The regulations of each target gene can be obtained by iteratively performing HSCVFNT. For each target gene, the HSCVFNT algorithm utilizes a novel scoring method based on time-delayed mutual information (TDMI), time-delayed maximum information coefficient (TDMIC) and time-delayed correlation coefficient (TDCC), to reduce the redundancy of regulatory relationships and obtain the candidate regulatory factor set. Then, the TDCC method is utilized to create time-delayed gene expression time-series matrix. Finally, a complex-valued flexible neural tree model is proposed to infer the time-delayed regulations of each target gene with the time-delayed time-series matrix. Three real time-series expression datasets from (Save Our Soul) SOS DNA repair system in E. coli and Saccharomyces cerevisiae are utilized to evaluate the performance of the HSCVFNT algorithm. As a result, HSCVFNT obtains outstanding F-scores of 0.923, 0.8 and 0.625 for SOS network and (In vivo Reverse-Engineering and Modeling Assessment) IRMA network inference, respectively, which are 5.5%, 14.3% and 72.2% higher than the best performance of other state-of-the-art GRN inference methods and time-delayed methods.


2017 ◽  
Vol 468 (4) ◽  
pp. 3775-3784 ◽  
Author(s):  
Matteo Pinamonti ◽  
Alessandro Sozzetti ◽  
Aldo S. Bonomo ◽  
Mario Damasso

2008 ◽  
Vol 56 (9) ◽  
pp. 4189-4198 ◽  
Author(s):  
P. Rubin-Delanchy ◽  
A.T. Walden
Keyword(s):  

2017 ◽  
Vol 19 (2) ◽  
pp. 306-317 ◽  

Window length is a very critical tuning parameter in Singular Spectrum Analysis (SSA) technique. For finding the optimal value of window length in SSA application, Periodogram analysis method with SSA for referencing on the selection of window length and confirm that the periodogram analysis can provide a good option for window length selection in the application of SSA. Several potential periods of Florida precipitation data are firstly obtained using periodogram analysis method. The SSA technique is applied to precipitation data with different window length as the period and experiential recommendation to extract the precipitation time series, which determines the leading components for reconstructing the precipitation and forecast respectively. A regressive model linear recurrent formula (LRF) model is used to discover physically evolution with the SSA modes of precipitation variability. Precipitation forecasts are deduced from SSA patterns and compared with observed precipitation. Comparison of forecasting results with observed precipitation indicates that the forecasts with window length of L=60 have the better performance among all. Our findings successfully confirm that the periodogram analysis can provide a good option for window length selection in the application of SSA and presents a detailed physical explanation on the varying conditions of precipitation variables.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bin Yang ◽  
Wenzheng Bao ◽  
Yuehui Chen

Symbolic regression has been utilized to infer mathematical formulas in order to solve the complex prediction and classification problems. In this paper, complex-valued S-system model (CVSS) is proposed to predict real-valued time series data. In a CVSS model, input variables and rate constants are complex-valued. The time series data need to be translated into complex numbers. The hybrid evolutionary algorithm based on complex-valued restricted additive tree and firefly algorithm is proposed to search the optimal CVSS model. Three financial time series data and Mackey–Glass chaos time series are collected to evaluate our proposed method. The experiment results show that the predicted data are very close to the target ones and our method could obtain the better RMSE, MAP, MAPE, POCID, R2, and ARV performances than ARIMA, radial basis function neural network (RBFNN), flexible neural tree (FNT), ordinary differential equation (ODE), and S-system.


Sign in / Sign up

Export Citation Format

Share Document