Kinematics of Complex-Valued Time Series

2008 ◽  
Vol 56 (9) ◽  
pp. 4189-4198 ◽  
Author(s):  
P. Rubin-Delanchy ◽  
A.T. Walden
Keyword(s):  
2018 ◽  
Vol 19 (10) ◽  
pp. 3178 ◽  
Author(s):  
Bin Yang ◽  
Yuehui Chen ◽  
Wei Zhang ◽  
Jiaguo Lv ◽  
Wenzheng Bao ◽  
...  

Gene regulatory network (GRN) inference can understand the growth and development of animals and plants, and reveal the mystery of biology. Many computational approaches have been proposed to infer GRN. However, these inference approaches have hardly met the need of modeling, and the reducing redundancy methods based on individual information theory method have bad universality and stability. To overcome the limitations and shortcomings, this thesis proposes a novel algorithm, named HSCVFNT, to infer gene regulatory network with time-delayed regulations by utilizing a hybrid scoring method and complex-valued flexible neural network (CVFNT). The regulations of each target gene can be obtained by iteratively performing HSCVFNT. For each target gene, the HSCVFNT algorithm utilizes a novel scoring method based on time-delayed mutual information (TDMI), time-delayed maximum information coefficient (TDMIC) and time-delayed correlation coefficient (TDCC), to reduce the redundancy of regulatory relationships and obtain the candidate regulatory factor set. Then, the TDCC method is utilized to create time-delayed gene expression time-series matrix. Finally, a complex-valued flexible neural tree model is proposed to infer the time-delayed regulations of each target gene with the time-delayed time-series matrix. Three real time-series expression datasets from (Save Our Soul) SOS DNA repair system in E. coli and Saccharomyces cerevisiae are utilized to evaluate the performance of the HSCVFNT algorithm. As a result, HSCVFNT obtains outstanding F-scores of 0.923, 0.8 and 0.625 for SOS network and (In vivo Reverse-Engineering and Modeling Assessment) IRMA network inference, respectively, which are 5.5%, 14.3% and 72.2% higher than the best performance of other state-of-the-art GRN inference methods and time-delayed methods.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bin Yang ◽  
Wenzheng Bao ◽  
Yuehui Chen

Symbolic regression has been utilized to infer mathematical formulas in order to solve the complex prediction and classification problems. In this paper, complex-valued S-system model (CVSS) is proposed to predict real-valued time series data. In a CVSS model, input variables and rate constants are complex-valued. The time series data need to be translated into complex numbers. The hybrid evolutionary algorithm based on complex-valued restricted additive tree and firefly algorithm is proposed to search the optimal CVSS model. Three financial time series data and Mackey–Glass chaos time series are collected to evaluate our proposed method. The experiment results show that the predicted data are very close to the target ones and our method could obtain the better RMSE, MAP, MAPE, POCID, R2, and ARV performances than ARIMA, radial basis function neural network (RBFNN), flexible neural tree (FNT), ordinary differential equation (ODE), and S-system.


1997 ◽  
Vol 119 (4) ◽  
pp. 512-522 ◽  
Author(s):  
Chong-Won Lee ◽  
Jong-Po Park ◽  
Kwang-Joon Kim

A new time series method, directional ARMAX (dARMAX) model-based approach, is proposed for rotor dynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible, to account for the dynamic characteristics inherent in rotating machinery. The dARMAX is superior in nature to the conventional ARMAX particularly in the estimation of the modal parameters for isotropic and weakly anisotropic rotors. Numerical simulations are performed to demonstrate effectiveness of the dARMAX.


Sign in / Sign up

Export Citation Format

Share Document