periodogram analysis
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 2)

2020 ◽  
Vol 495 (1) ◽  
pp. 1461-1467
Author(s):  
K A Stoyanov ◽  
K Iłkiewicz ◽  
G J M Luna ◽  
J Mikołajewska ◽  
K Mukai ◽  
...  

ABSTRACT We performed high-resolution optical spectroscopy and X-ray observations of the recently identified Mira-type symbiotic star EF Aql. Based on high-resolution optical spectroscopy obtained with the Southern African Large Telescope (SALT), we determine the temperature (∼55 000 K) and the luminosity (∼5.3 L⊙) of the hot component in the system. The heliocentric radial velocities of the emission lines in the spectra reveal possible stratification of the chemical elements. We also estimate the mass-loss rate of the Mira donor star. Our Swift observation did not detect EF Aql in X-rays. The upper limit of the X-ray observations is 10−12 erg cm−2 s−1, which means that EF Aql is consistent with the faintest X-ray systems detected so far. Otherwise we detected it with the UltraViolet and Optical Telescope (UVOT) instrument with an average UVM2 magnitude of 14.05. During the exposure, EF Aql became approximately 0.2 UVM2 magnitudes fainter. The periodogram analysis of the V-band data reveals an improved period of 320.4 ± 0.3 d caused by the pulsations of the Mira-type donor star.


2019 ◽  
Vol 491 (3) ◽  
pp. 4131-4146 ◽  
Author(s):  
J Zhao ◽  
C G Tinney

ABSTRACT We propose a new analysis methodology – FourIEr phase SpecTrum Analysis (FIESTA, or $\mathit {\Phi }$ESTA) – for the study of spectral line profile variability in Fourier space. The philosophy of $\mathit {\Phi }$ESTA is highlighted in its interpretation of a line deformation as various shifts of the composing Fourier modes. With this ability, $\mathit {\Phi }$ESTA excels in distinguishing the effects of a bulk shift in a line profile, from changes in a line profile shape. In other words, it can distinguish a radial velocity shift due to orbiting companions like planets, from an apparent radial velocity shift due to stellar variability (often referred to as ‘jitter’). Most importantly, it can quantify the radial velocity impact of stellar jitter on each epoch. Our simulations show that (compared to a model that does not account for stellar activity), $\mathit {\Phi }$ESTA can almost triple the fraction of planets recovered with orbital parameters measured to within 10 per cent of their input parameters, when extracting a 2 m s−1 amplitude planetary signal in the midst of ∼2 m s−1 amplitude starspot jitter for high signal-to-noise ratio (>200 pixel−1) data. $\mathit {\Phi }$ESTA can also be used to identify stellar activity related periods in a periodogram analysis and classify relative amplitudes of stellar jitter and planetary signals, with examples for the analysis of HARPS data of the active star HD 224789 and the active planet-host star HD 103720. In the end, we demonstrate that $\mathit {\Phi }$ESTA’s framework is working as well as other activity indicators in correlating with stellar jitter.


2019 ◽  
Vol 631 ◽  
pp. A136 ◽  
Author(s):  
R. Luque ◽  
T. Trifonov ◽  
S. Reffert ◽  
A. Quirrenbach ◽  
M. H. Lee ◽  
...  

We report the discovery of a second planet orbiting the K giant star 7 CMa based on 166 high-precision radial velocities obtained with Lick, HARPS, UCLES, and SONG. The periodogram analysis reveals two periodic signals of approximately 745 and 980 d, associated with planetary companions. A double-Keplerian orbital fit of the data reveals two Jupiter-like planets with minimum masses mb sini ~ 1.9 MJ and mc sini ~ 0.9 MJ, orbiting at semimajor axes of ab ~ 1.75 au and ac ~ 2.15 au, respectively. Given the small orbital separation and the large minimum masses of the planets, close encounters may occur within the time baseline of the observations; thus, a more accurate N-body dynamical modeling of the available data is performed. The dynamical best-fit solution leads to collision of the planets and we explore the long-term stable configuration of the system in a Bayesian framework, confirming that 13% of the posterior samples are stable for at least 10 Myr. The result from the stability analysis indicates that the two planets are trapped in a low-eccentricity 4:3 mean motion resonance. This is only the third discovered system to be inside a 4:3 resonance, making this discovery very valuable for planet formation and orbital evolution models.


Biology ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Laurence Brown ◽  
Angus Fisk ◽  
Carina Pothecary ◽  
Stuart Peirson

Circadian rhythms are approximately 24 h cycles in physiology and behaviour that enable organisms to anticipate predictable rhythmic changes in their environment. These rhythms are a hallmark of normal healthy physiology, and disruption of circadian rhythms has implications for cognitive, metabolic, cardiovascular and immune function. Circadian disruption is of increasing concern, and may occur as a result of the pressures of our modern 24/7 society—including artificial light exposure, shift-work and jet-lag. In addition, circadian disruption is a common comorbidity in many different conditions, ranging from aging to neurological disorders. A key feature of circadian disruption is the breakdown of robust, reproducible rhythms with increasing fragmentation between activity and rest. Circadian researchers have developed a range of methods for estimating the period of time series, typically based upon periodogram analysis. However, the methods used to quantify circadian disruption across the literature are not consistent. Here we describe a range of different measures that have been used to measure circadian disruption, with a particular focus on laboratory rodent data. These methods include periodogram power, variability in activity onset, light phase activity, activity bouts, interdaily stability, intradaily variability and relative amplitude. The strengths and limitations of these methods are described, as well as their normal ranges and interrelationships. Whilst there is an increasing appreciation of circadian disruption as both a risk to health and a potential therapeutic target, greater consistency in the quantification of disrupted rhythms is needed.


2019 ◽  
Vol 623 ◽  
pp. A144 ◽  
Author(s):  
M. Zapiór ◽  
B. Schmieder ◽  
P. Mein ◽  
N. Mein ◽  
N. Labrosse ◽  
...  

Context. In previous work, we studied a prominence which appeared like a tornado in a movie made from 193 Å filtergrams obtained with the Atmospheric Imaging Assembly (AIA) imager aboard the Solar Dynamics Observatory (SDO). The observations in Hα obtained simultaneously during two consecutive sequences of one hour with the Multi-channel Subtractive Double Pass Spectrograph (MSDP) operating at the solar tower in Meudon showed that the cool plasma inside the tornado was not rotating around its vertical axis. Furthermore, the evolution of the Dopplershift pattern suggested the existence of oscillations of periods close to the time-span of each sequence. Aims. The aim of the present work is to assemble the two sequences of Hα observations as a full data set lasting two hours to confirm the existence of oscillations, and determine their nature. Methods. After having coaligned the Doppler maps of the two sequences, we use a Scargle periodogram analysis and cosine fitting to compute the periods and the phase of the oscillations in the full data set. Results. Our analysis confirms the existence of oscillations with periods between 40 and 80 min. In the Dopplershift maps, we identify large areas with strong spectral power. In two of them, the oscillations of individual pixels are in phase. However, in the top area of the prominence, the phase is varying slowly, suggesting wave propagation. Conclusions. We conclude that the prominence does not oscillate as a whole structure but exhibits different areas with their own oscillation periods and characteristics: standing or propagating waves. We discuss the nature of the standing oscillations and the propagating waves. These can be interpreted in terms of gravito-acoustic modes and magnetosonic waves, respectively.


2018 ◽  
Vol 14 (A30) ◽  
pp. 137-137
Author(s):  
Markus Schöller ◽  
Mikhail A. Pogodin

AbstractAfter successfully retrieving the known rotation period P = 42.076 d in the Herbig Ae star HD 101412 using spectroscopic signatures of accretion tracers (Schöller et al.2016), we have studied magnetospheric accretion in the Herbig Ae SB2 system HD 104237 using spectroscopic parameters of the He i 10830, Paγ, and He i 5876 lines, formed in the accretion region. Employing 21 spectra obtained with ISAAC and X-shooter, we found that the temporal behavior of these parameters can be explained by a variable amount of matter being accreted in the region between the star and the observer. Using a periodogram analysis, we examined the possible origin of the accretion flow in HD 104237 and considered the following four scenarios: matter flows from the circumbinary envelope, mass exchange between the system’s components, magnetospheric accretion (MA) from the disk onto the star, and fast high-latitude accretion from a disk wind onto a weakly magnetized star. Based on a correlation analysis, we were able to show that the primary component is responsible for the observed emission line spectrum of the system. Since we do not find any correlation of the spectroscopic parameters with the phase of the orbital period (P ≍ 20 d), we can reject the first two scenarios. We found a variation period of about 5 d, which likely represents the stellar rotation period of the primary and favors the MA scenario.


Sign in / Sign up

Export Citation Format

Share Document