scholarly journals Quantification of Interferon Signaling in Avian Cells

Author(s):  
Joeri Kint ◽  
Maria Forlenza
Keyword(s):  
2020 ◽  
Vol 15 ◽  
Author(s):  
Mingxuan Yang ◽  
Liangtao Zhao ◽  
Xuchang Hu ◽  
Haijun Feng ◽  
Xuewen Kang

Background: Osteosarcoma (OS) is one of the most common primary malignant bone tumors in teenagers. Emerging studies demonstrated TWEAK and Fn14 were involved in regulating cancer cell differentiation, proliferation, apoptosis, migration and invasion. Objective: The present study identified differently expressed mRNAs and lncRNAs after anti-TWEAK treatment in OS cells using GSE41828. Methods: We identified 922 up-regulated mRNAs, 863 downregulated mRNAs, 29 up-regulated lncRNAs, and 58 down-regulated lncRNAs after anti-TWEAK treatment in OS cells. By constructing PPI networks, we identified several key proteins involved in anti-TWEAK treatment in OS cells, including MYC, IL6, CD44, ITGAM, STAT1, CCL5, FN1, PTEN, SPP1, TOP2A, and NCAM1. By constructing lncRNAs coexpression networks, we identified several key lncRNAs, including LINC00623, LINC00944, PSMB8-AS1, LOC101929787. Result: Bioinformatics analysis revealed DEGs after anti-TWEAK treatment in OS were involved in regulating type I interferon signaling pathway, immune response related pathways, telomere organization, chromatin silencing at rDNA, and DNA replication. Bioinformatics analysis revealed differently expressed lncRNAs after antiTWEAK treatment in OS were related to telomere organization, protein heterotetramerization, DNA replication, response to hypoxia, TNF signaling pathway, PI3K-Akt signaling pathway, Focal adhesion, Apoptosis, NF-kappa B signaling pathway, MAPK signaling pathway, FoxO signaling pathway. Conclusion: : This study provided useful information for understanding the mechanisms of TWEAK underlying OS progression and identifying novel therapeutic markers for OS.


Author(s):  
Marina Rieder ◽  
Luisa Wirth ◽  
Luisa Pollmeier ◽  
Maren Jeserich ◽  
Isabella Goller ◽  
...  

Abstract Background Severe courses of COVID-19 are associated with elevated levels of interleukin 6. However, there is a growing body of evidence pointing to a broad and more complex disorder of pro-inflammatory and anti-viral responses with disturbed interferon signaling in COVID-19. Methods In this prospective single-center registry, we included SARS-CoV-2 positive patients and patients with similar symptoms and severity of disease but negative for SARS-CoV-2 admitted to the emergency department and compared their serum protein expression profiles. Results Interleukin-6 abundance was similar in SARS-CoV-2 positive patients (n = 24) compared to SARS-CoV-2 negative control (n = 61). In contrast, we observed a specific upregulation of the immunomodulatory protein progranulin (GRN). High GRN abundance was associated with adverse outcomes and increased expression of interleukin-6 in COVID-19. Conclusion The data from this registry reveals that GRN is specifically upregulated in SARS-CoV-2 positive patients while interleukin-6 may serve as marker for disease severity. The potential of GRN as a biomarker and a possible impact of increased GRN expression on interferon signaling, virus elimination, and virus-induced lung tissue damage in COVID-19 should be further explored.


Sign in / Sign up

Export Citation Format

Share Document