taste bud cells
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 2)

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2285
Author(s):  
Habtom Ftuwi ◽  
Rheinallt Parri ◽  
Afzal R. Mohammed

Current understanding of functional characteristics and biochemical pathways in taste bud cells have been hindered due the lack of long-term cultured cells. To address this, we developed a holistic approach to fully characterise long term cultured bovine taste bud cells (BTBCs). Initially, cultured BTBCs were characterised using RT-PCR gene expression profiling, immunocytochemistry, flowcytometry and calcium imaging, that confirmed the cells were mature TBCs that express taste receptor genes, taste specific protein markers and capable of responding to taste stimuli, i.e., denatonium (2 mM) and quinine (462.30 μM). Gene expression analysis of forty-two genes implicated in taste transduction pathway (map04742) using custom-made RT-qPCR array revealed high and low expressed genes in BTBCs. Preliminary datamining and bioinformatics demonstrated that the bovine α-gustducin, gustatory G-protein, have higher sequence similarity to the human orthologue compared to rodents. Therefore, results from this work will replace animal experimentation and provide surrogate cell-based throughput system to study human taste transduction.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mojca Jensterle ◽  
Simona Ferjan ◽  
Tadej Battelino ◽  
Jernej Kovač ◽  
Saba Battelino ◽  
...  

Abstract Background Preclinical studies demonstrated that glucagon-like peptide 1 (GLP-1) is locally synthesized in taste bud cells and that GLP-1 receptor exists on the gustatory nerves in close proximity to GLP-1-containing taste bud cells. This local paracrine GLP-1 signalling seems to be specifically involved in the perception of sweets. However, the role of GLP-1 in taste perception remains largely unaddressed in clinical studies. Whether any weight-reducing effects of GLP-1 receptor agonists are mediated through the modulation of taste perception is currently unknown. Methods and analysis This is an investigator-initiated, randomized single-blind, placebo-controlled clinical trial. We will enrol 30 women with obesity and polycystic ovary syndrome (PCOS). Participants will be randomized in a 1:1 ratio to either semaglutide 1.0 mg or placebo for 16 weeks. The primary endpoints are alteration of transcriptomic profile of tongue tissue as changes in expression level from baseline to follow-up after 16 weeks of treatment, measured by RNA sequencing, and change in taste sensitivity as detected by chemical gustometry. Secondary endpoints include change in neural response to visual food cues and to sweet-tasting substances as assessed by functional MRI, change in body weight, change in fat mass and change in eating behaviour and food intake. Discussion This is the first study to investigate the role of semaglutide on taste perception, along with a neural response to visual food cues in reward processing regions. The study may identify the tongue and the taste perception as a novel target for GLP-1 receptor agonists. Ethics and disseminations The study has been approved by the Slovene National Medical Ethics Committee and will be conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. Results will be submitted for publication in an international peer-reviewed scientific journal. Trial registration ClinicalTrials.govNCT04263415. Retrospectively registered on 10 February 2020


2021 ◽  
Vol 15 ◽  
Author(s):  
Elena von Molitor ◽  
Katja Riedel ◽  
Michael Krohn ◽  
Mathias Hafner ◽  
Rüdiger Rudolf ◽  
...  

Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Yoshida ◽  
Fuminori Kawabata ◽  
Shotaro Nishimura ◽  
Shoji Tabata

AbstractThe characterization of molecular mechanisms underlying the taste-sensing system of chickens will add to our understanding of their feeding behaviors in poultry farming. In the mammalian taste system, the heterodimer of taste receptor type 1 members 1/3 (T1R1/T1R3) functions as an umami (amino acid) taste receptor. Here, we analyzed the expression patterns of T1R1 and T1R3 in the taste cells of chickens, labeled by the molecular markers for chicken taste buds (vimentin and α-gustducin). We observed that α-gustducin was expressed in some of the chicken T1R3-positive taste bud cells but rarely expressed in the T1R1-positive and T2R7-positive taste bud cells. These results raise the possibility that there is another second messenger signaling system in chicken taste sensory cells. We also observed that T1R3 and α-gustducin were expressed mostly in the vimentin-positive taste bud cells, whereas T1R1 and bitter taste receptor (i.e., taste receptor type 2 member 7, T2R7) were expressed largely in the vimentin-negative taste bud cells in chickens. In addition, we observed that T1R1 and T1R3 were co-expressed in about 5% of chickens' taste bud cells, which express T1R1 or T1R3. These results suggest that the heterodimer of T1R1 and T1R3 is rarely formed in chickens’ taste bud cells, and they provide comparative insights into the expressional regulation of taste receptors in the taste bud cells of vertebrates.


2021 ◽  
Author(s):  
Domenico M. Guarascio ◽  
Kevin Y. Gonzalez‐Velandia ◽  
Andres Hernandez‐Clavijo ◽  
Anna Menini ◽  
Simone Pifferi

2020 ◽  
Vol 118 (2) ◽  
pp. e2001833118
Author(s):  
Xiaoli Lin ◽  
Chanyi Lu ◽  
Makoto Ohmoto ◽  
Katarzyna Choma ◽  
Robert F. Margolskee ◽  
...  

Taste bud cells regenerate throughout life. Taste bud maintenance depends on continuous replacement of senescent taste cells with new ones generated by adult taste stem cells. More than a century ago it was shown that taste buds degenerate after their innervating nerves are transected and that they are not restored until after reinnervation by distant gustatory ganglion neurons. Thus, neuronal input, likely via neuron-supplied factors, is required for generation of differentiated taste cells and taste bud maintenance. However, the identity of such a neuron-supplied niche factor(s) remains unclear. Here, by mining a published RNA-sequencing dataset of geniculate ganglion neurons and by in situ hybridization, we demonstrate that R-spondin-2, the ligand of Lgr5 and its homologs Lgr4/6 and stem-cell-expressed E3 ligases Rnf43/Znrf3, is expressed in nodose-petrosal and geniculate ganglion neurons. Using the glossopharyngeal nerve transection model, we show that systemic delivery of R-spondin via adenovirus can promote generation of differentiated taste cells despite denervation. Thus, exogenous R-spondin can substitute for neuronal input for taste bud cell replenishment and taste bud maintenance. Using taste organoid cultures, we show that R-spondin is required for generation of differentiated taste cells and that, in the absence of R-spondin in culture medium, taste bud cells are not generated ex vivo. Thus, we propose that R-spondin-2 may be the long-sought neuronal factor that acts on taste stem cells for maintaining taste tissue homeostasis.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0240848
Author(s):  
Makoto Ohmoto ◽  
Weiwei Lei ◽  
Junpei Yamashita ◽  
Junji Hirota ◽  
Peihua Jiang ◽  
...  

2020 ◽  
pp. 501-510
Author(s):  
Y NAKAO ◽  
M KOSHIMURA ◽  
T YAMASAKI ◽  
Y OHTUBO

Inwardly rectifying potassium (Kir) channels play key roles in functions, including maintaining the resting membrane potential and regulating the action potential duration in excitable cells. Using in situ whole-cell recordings, we investigated Kir currents in mouse fungiform taste bud cells (TBCs) and immunologically identified the cell types (type I-III) expressing these currents. We demonstrated that Kir currents occur in a cell-type-independent manner. The activation potentials we measured were -80 to -90 mV, and the magnitude of the currents increased as the membrane potentials decreased, irrespective of the cell types. The maximum current densities at -120 mV showed no significant differences among cell types (p>0.05, one-way ANOVA). The density of Kir currents was not correlated with the density of either transient inward currents or outwardly rectifying currents, although there was significant correlation between transient inward and outwardly rectifying current densities (p<0.05, test for no correlation). RT-PCR studies employing total RNA extracted from peeled lingual epithelia detected mRNAs for Kir1, Kir2, Kir4, Kir6, and Kir7 families. These findings indicate that TBCs express several types of Kir channels functionally, which may contribute to regulation of the resting membrane potential and signal transduction of taste.


2020 ◽  
Vol 29 (10) ◽  
pp. 638-647
Author(s):  
Wenxin Yu ◽  
Mohamed Ishan ◽  
Yao Yao ◽  
Steven L. Stice ◽  
Hong-Xiang Liu

Sign in / Sign up

Export Citation Format

Share Document