Faculty Opinions recommendation of Long-distance interferon signaling within the brain blocks virus spread.

Author(s):  
Anirban Basu ◽  
Sourish Ghosh
2014 ◽  
Vol 88 (7) ◽  
pp. 3695-3704 ◽  
Author(s):  
A. N. van den Pol ◽  
S. Ding ◽  
M. D. Robek

2021 ◽  
Vol 14 ◽  
pp. 117864692110031
Author(s):  
Marion Falabrègue ◽  
Anne-Claire Boschat ◽  
Romain Jouffroy ◽  
Marieke Derquennes ◽  
Haidar Djemai ◽  
...  

Low levels of the neurotransmitter serotonin have been associated with the onset of depression. While traditional treatments include antidepressants, physical exercise has emerged as an alternative for patients with depressive disorders. Yet there remains the fundamental question of how exercise is sensed by the brain. The existence of a muscle–brain endocrine loop has been proposed: according to this scenario, exercise modulates metabolization of tryptophan into kynurenine within skeletal muscle, which in turn affects the brain, enhancing resistance to depression. But the breakdown of tryptophan into kynurenine during exercise may also alter serotonin synthesis and help limit depression. In this study, we investigated whether peripheral serotonin might play a role in muscle–brain communication permitting adaptation for endurance training. We first quantified tryptophan metabolites in the blood of 4 trained athletes before and after a long-distance trail race and correlated changes in tryptophan metabolism with physical performance. In parallel, to assess exercise capacity and endurance in trained control and peripheral serotonin–deficient mice, we used a treadmill incremental test. Peripheral serotonin–deficient mice exhibited a significant drop in physical performance despite endurance training. Brain levels of tryptophan metabolites were similar in wild-type and peripheral serotonin–deficient animals, and no products of muscle-induced tryptophan metabolism were found in the plasma or brains of peripheral serotonin–deficient mice. But mass spectrometric analyses revealed a significant decrease in levels of 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in both the soleus and plantaris muscles, demonstrating that metabolization of tryptophan into serotonin in muscles is essential for adaptation to endurance training. In light of these findings, the breakdown of tryptophan into peripheral but not brain serotonin appears to be the rate-limiting step for muscle adaptation to endurance training. The data suggest that there is a peripheral mechanism responsible for the positive effects of exercise, and that muscles are secretory organs with autocrine-paracrine roles in which serotonin has a local effect.


The Neuron ◽  
2015 ◽  
pp. 23-38
Author(s):  
Irwin B. Levitan ◽  
Leonard K. Kaczmarek

This chapter examines unique mechanisms that the neuron has evolved to establish and maintain the form required for its specialized signaling functions. Unlike some other organs, the brain contains a variety of cell types including several classes of glial cells, which play a critical role in the formation of the myelin sheath around axons and may be involved in immune responses, synaptic transmission, and long-distance calcium signaling in the brain. Neurons share many features in common with other cells (including glia), but they are distinguished by their highly asymmetrical shapes. The neuronal cytoskeleton is essential for establishing this cell shape during development and for maintaining it in adulthood. The process of axonal transport moves vesicles and other organelles to regions remote from the neuronal cell body. Proteins such as kinesin and dynein, called molecular motors, make use of the energy released by hydrolysis of ATP to drive axonal transport.


2020 ◽  
Vol 80 (7-8) ◽  
pp. 213-228
Author(s):  
Patrick S. Creisher ◽  
Manisha N. Chandwani ◽  
Yashika S. Kamte ◽  
Jordan R. Covvey ◽  
Priya Ganesan ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. e1009344
Author(s):  
Lars Keuninckx ◽  
Axel Cleeremans

We show how anomalous time reversal of stimuli and their associated responses can exist in very small connectionist models. These networks are built from dynamical toy model neurons which adhere to a minimal set of biologically plausible properties. The appearance of a “ghost” response, temporally and spatially located in between responses caused by actual stimuli, as in the phi phenomenon, is demonstrated in a similar small network, where it is caused by priming and long-distance feedforward paths. We then demonstrate that the color phi phenomenon can be present in an echo state network, a recurrent neural network, without explicitly training for the presence of the effect, such that it emerges as an artifact of the dynamical processing. Our results suggest that the color phi phenomenon might simply be a feature of the inherent dynamical and nonlinear sensory processing in the brain and in and of itself is not related to consciousness.


2021 ◽  
Author(s):  
Noemie Vilallongue ◽  
Julia Schaeffer ◽  
Anne-Marie Hesse ◽  
Celine Delpech ◽  
Antoine Paccard ◽  
...  

Long-distance regeneration of the central nervous system (CNS) has been achieved from the eye to the brain through activation of neuronal molecular pathways or pharmacological approaches. Unexpectedly, most of the regenerative fibers display guidance defects, which prevents reinnervation and further functional recovery. Therefore, characterizing the mature neuronal environment is essential to understand the adult axonal guidance in order to complete the circuit reconstruction. To this end, we used mass spectrometry to characterize the proteomes of major nuclei of the adult visual system: suprachiasmatic nucleus (SCN), ventral and dorsal lateral geniculate nucleus (vLGN, dLGN) and superior colliculus (SC)), as well as the optic chiasm. These analyses revealed the presence of guidance molecules and guidance-associated factors in the adult visual targets. Moreover, by performing bilateral optic nerve crush, we showed that the expression of some proteins was significantly modulated by the injury in the visual targets, even in the ones most distal to the lesion site. On another hand, we found that the expression of guidance molecules was not modified upon injury. This implies that these molecules may possibly interfere with the reinnervation of the brain targets. Together, our results provides an extensive characterization of the molecular environment in intact and injured conditions. These findings open new ways to correct regenerating axon guidance notably by manipulating the expression of the corresponding guidance receptors in the nervous system.


1995 ◽  
Vol 1995 ◽  
pp. 204-204
Author(s):  
E.A. Azaga ◽  
R.G. Rodway

The long distance transport of sheep before slaughter is at present a very important topic in animal welfare. However, Modulation of opioid receptors can be influenced by chronic treatment with opioid agonists and antagonists (Blanchard, and Chang, 1988). Similarly, opioid receptors can be up or down-regulated by stressful stimuli such as restraint, electric footshock or social isolation and housing (Zeman et al., 1988 and Zanella et al., 1991). The present study was carried out to assess the effects of transport stress on the properties of one class of opioid peptide receptor in the brain of sheep after transport stress. Opioid peptides such as β-endorphin are released by the central nervous system during application of stresses such as transport. They are believed to exert analgesic properties and their effectiveness depends partly on the concentration (Bmax) and affinity (Kd) of their receptors. µ-Opioid receptors are found in various brain regions and are selective for endorphins and similar peptides.


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Robert J. J. Jansens ◽  
Wim Van den Broeck ◽  
Steffi De Pelsmaeker ◽  
Jochen A. S. Lamote ◽  
Cliff Van Waesberghe ◽  
...  

ABSTRACT Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread. IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication.


Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 46 ◽  
Author(s):  
Leonardo Mariano Gomes ◽  
Rita Wu

In this paper, we present the Neurodildo, a sex toy remotely controlled by brain waves, which is pressure sensitive and has electrical stimulation (e-stim) feedback. The Neurodildo was originally presented as a conference paper at the 3rd International Congress on Love and Sex with Robots (2017). We designed and explored the application of a mind-controlled sex toy for the people with mobility disabilities, for example with spinal cord injury (SCI), who have difficulty handling a commercial toy and that might experience difficulties in a sexual encounter. The system consists of the sex toy with Bluetooth and sensors, the brain-computer interface (BCI) headset, the e-stim device, and a computer for running the necessary software. The first user wears the headset and the e-stim device, and by focusing in trained patterns, he/she can control the vibration of the sex toy. The pressure applied to the sex toy by the second user is measured by sensors and transmitted and converted to the first user, who feels muscle contractions. We discuss the design process, the limitations of the prototype and how evaluating the user requirements is necessary for a better product. We also included a background and discussion on the application of sex robots for assisting disabled people and how the Neurodildo could be integrated with this futuristic technology. The goal of this project is to design a sex toy that might help people with disabilities and people in long-distance relationships (LDR), trying to fill the gap of sex toys designed for people with disabilities.


Sign in / Sign up

Export Citation Format

Share Document