Manipulation of Homologous and Homoeologous Chromosome Recombination in Wheat

Author(s):  
Adam J. Lukaszewski
1990 ◽  
Vol 10 (1) ◽  
pp. 37-46
Author(s):  
J S Mudgett ◽  
W D Taylor

An autonomously replicating shuttle vector was used to investigate enhancement of plasmid-chromosome recombination in mammalian host cells by gamma irradiation and UV light. Sequences homologous to the shuttle vector were stably inserted into the genome of African green monkey kidney cells to act as the target substrate for these recombination events. The shuttle vector molecules were irradiated at various doses before transfection into the mammalian host cells that contained the stable insertions. The homologous transfer of the bacterial ampicillin resistance gene from the inserted sequences to replace a mutant ampicillin sensitivity gene on the shuttle vector was identified by the recovery of ampicillin-resistant plasmids after Hirt extraction and transformation into Escherichia coli host cells. Gamma irradiation increased homologous shuttle vector-chromosome recombination, whereas UV light did not increase the frequency of recombinant plasmids detected. Introducing specific double-strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was increased by UV irradiation of the plasmid but did not change with time. The ampicillin-resistant recombinant plasmid molecules analyzed appeared to rise mostly from nonconservative exchanges that involved both homologous and possibly nonhomologous interactions with the host chromosome. The observation that similar recombinant structures were obtained from all the plasmid treatments and host cells used suggests a common mechanism for plasmid-chromosome recombination in these mammalian cells.


1982 ◽  
Vol 24 (6) ◽  
pp. 715-719 ◽  
Author(s):  
E. R. Sears

An X-ray-induced mutation in common wheat (Triticum aestivum L.), designated ph2, conditions an intermediate level of homoeologous chromosome pairing in hybrids with Triticum kotschyi var. variabilis. The number of chromosomes paired averaged 9.2 per sporocyte, compared with 2.0 in the control and 27.9 in the same hybrid involving ph1b, an apparent deficiency for Ph1 obtained in the same mutation experiment. The ph2 mutation is located on chromosome 3D and is believed to be a deficiency for a terminal segment of the short arm that includes the locus of Ph2, a minor suppressor of homoeologous pairing. Although no pairing of the ph2-carrying chromosome with telosome 3DS was observed, the mutation is clearly not a deficiency for the entire arm. It has little effect on pairing in wheat itself. Male transmission of the mutation is approximately normal, and fertility, while reduced, is sufficient for easy maintenance of the homozygous line.


Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 782-788 ◽  
Author(s):  
W Spielmeyer ◽  
M Robertson ◽  
N Collins ◽  
D Leister ◽  
P Schulze-Lefert ◽  
...  

In this study, resistance gene analogs (RGAs) which were isolated from monocot crop species (wheat, barley, maize and rice) and contained conserved sequence motifs found within the nucleotide binding site - leucine rich repeat (NBS-LRR) class of resistance genes, were used to assess their distribution in the wheat genome. The RGAs showed 30-70% amino acid identity to a previously isolated monocot NBS-LRR sequence from the Cre3 locus for cereal cyst nematode (CCN) resistance in wheat. We used the RGAs as probes to identify and map loci in wheat using recombinant inbred lines of an international Triticeae mapping family. RGA loci mapped across all seven homoeologous chromosome groups of wheat. This study demonstrated that the RGA mapping approach provides potential entry points toward identifying resistance gene candidates in wheat.Key words: wheat, disease resistance genes, nucleotide binding site, leucine rich repeat, resistance gene analogs.


2018 ◽  
Vol 13 (1) ◽  
pp. 9-24 ◽  
Author(s):  
Kiyotaka Hori ◽  
Yudai Okuyama ◽  
Yasuyuki Watano ◽  
Noriaki Murakami

Sign in / Sign up

Export Citation Format

Share Document