In Vivo Analysis of Potassium Channelopathies: Loose Patch Recording of Purkinje Cell Firing in Living, Awake Zebrafish

Author(s):  
Jui-Yi Hsieh ◽  
Diane M. Papazian
eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Meike E van der Heijden ◽  
Elizabeth P Lackey ◽  
Ross Perez ◽  
Fatma S Ișleyen ◽  
Amanda M Brown ◽  
...  

Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.


2018 ◽  
Vol 17 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Polina A. Egorova ◽  
Alexandra V. Gavrilova ◽  
Ilya B. Bezprozvanny

2013 ◽  
Vol 109 (10) ◽  
pp. 2528-2541 ◽  
Author(s):  
Mark D. Benton ◽  
Amanda H. Lewis ◽  
Jason S. Bant ◽  
Indira M. Raman

Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17–21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (β4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias.


2020 ◽  
Author(s):  
Meike E. van der Heijden ◽  
Elizabeth P. Lackey ◽  
Fatma S. Işleyen ◽  
Amanda M. Brown ◽  
Ross Perez ◽  
...  

SUMMARYPreterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Granule cells are especially vulnerable, and they likely instigate disease by impairing the function of Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether granule cells help establish the firing properties of Purkinje cells during postnatal mouse development. We generated mice that lack granule cell neurogenesis and tracked the structural and functional consequences on Purkinje cells in these agranular pups. We reveal that Purkinje cells fail to acquire their typical connectivity and morphology, and the formation of characteristic Purkinje cell firing patterns is delayed by one week. We also show that the agranular pups have impaired motor behaviors and vocal skills. These data argue that granule cell neurogenesis sets the maturation time window for Purkinje cell function and refines cerebellar-dependent behaviors.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2005 ◽  
Vol 173 (4S) ◽  
pp. 287-287
Author(s):  
Anhur L. Burnett ◽  
Hunter C. Champion ◽  
Robyn E. Becker ◽  
Melissa F. Kramer ◽  
Tongyun Liu ◽  
...  

Pneumologie ◽  
2017 ◽  
Vol 71 (S 01) ◽  
pp. S1-S125
Author(s):  
S Berger ◽  
C Gökeri ◽  
U Behrendt ◽  
SM Wienhold ◽  
J Lienau ◽  
...  

Diabetes ◽  
1993 ◽  
Vol 42 (7) ◽  
pp. 956-965 ◽  
Author(s):  
B. A. Zinker ◽  
D. B. Lacy ◽  
D. Bracy ◽  
J. Jacobs ◽  
D. H. Wasserman

Sign in / Sign up

Export Citation Format

Share Document