Genome-Wide Analysis for Identifying FOXO Protein-Binding Sites

Author(s):  
Dong-Ju Shin ◽  
Pujan Joshi ◽  
Dong-Guk Shin ◽  
Li Wang
2021 ◽  
Author(s):  
Fenglin Liu ◽  
Tianyu Ma ◽  
Yu-Xiang Zhang

AbstractWe present GWPBS-Cap, a method to capture genome-wide protein binding sites (PBSs) without using antibodies. Using this technique, we identified many protein binding sites with different binding strengths between proteins and DNA. The PBSs can be useful to predict transcription binding sites and the co-localization of multiple transcription factors in the genome. The results also revealed that active promoters contained more protein binding sites with lower NaCl tolerances. Taken together, GWPBS-Cap can be used to efficiently identify protein binding sites and reveal genome-wide landscape of DNA-protein interactions.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S223-S246 ◽  
Author(s):  
C. R. Wira ◽  
H. Rochefort ◽  
E. E. Baulieu

ABSTRACT The definition of a RECEPTOR* in terms of a receptive site, an executive site and a coupling mechanism, is followed by a general consideration of four binding criteria, which include hormone specificity, tissue specificity, high affinity and saturation, essential for distinguishing between specific and nonspecific binding. Experimental approaches are proposed for choosing an experimental system (either organized or soluble) and detecting the presence of protein binding sites. Techniques are then presented for evaluating the specific protein binding sites (receptors) in terms of the four criteria. This is followed by a brief consideration of how receptors may be located in cells and characterized when extracted. Finally various examples of oestrogen, androgen, progestagen, glucocorticoid and mineralocorticoid binding to their respective target tissues are presented, to illustrate how researchers have identified specific corticoid and mineralocorticoid binding in their respective target tissue receptors.


Sign in / Sign up

Export Citation Format

Share Document