Reverse Genetic Analysis of Antiviral Resistance Signaling and the Resistance Mechanism in Arabidopsis thaliana

Author(s):  
Yukiyo Sato ◽  
Hideki Takahashi
Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1726
Author(s):  
Mio Tanaka ◽  
Ryuki Takahashi ◽  
Akane Hamada ◽  
Yusuke Terai ◽  
Takahisa Ogawa ◽  
...  

Monodehydroascorbate reductase (MDAR) is an enzyme involved in ascorbate recycling. Arabidopsis thaliana has five MDAR genes that encode two cytosolic, one cytosolic/peroxisomal, one peroxisomal membrane-attached, and one chloroplastic/mitochondrial isoform. In contrast, tomato plants possess only three enzymes, lacking the cytosol-specific enzymes. Thus, the number and distribution of MDAR isoforms differ according to plant species. Moreover, the physiological significance of MDARs remains poorly understood. In this study, we classify plant MDARs into three classes: class I, chloroplastic/mitochondrial enzymes; class II, peroxisomal membrane-attached enzymes; and class III, cytosolic/peroxisomal enzymes. The cytosol-specific isoforms form a subclass of class III and are conserved only in Brassicaceae plants. With some exceptions, all land plants and a charophyte algae, Klebsormidium flaccidum, contain all three classes. Using reverse genetic analysis of Arabidopsis thaliana mutants lacking one or more isoforms, we provide new insight into the roles of MDARs; for example, (1) the lack of two isoforms in a specific combination results in lethality, and (2) the role of MDARs in ascorbate redox regulation in leaves can be largely compensated by other systems. Based on these findings, we discuss the distribution and function of MDAR isoforms in land plants and their cooperation with other recycling systems.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Xin Tong ◽  
Song-Yu Liu ◽  
Long-Xiang Chai ◽  
Fei-Fan Zhu ◽  
...  

2001 ◽  
Vol 356 (1415) ◽  
pp. 1755-1759 ◽  
Author(s):  
Dorothee Staiger

An Arabidopsis transcript preferentially expressed at the end of the daily light period codes for the RNA–binding protein At GRP7. A reverse genetic approach in Arabidopsis thaliana has revealed its role in the generation of circadian rhythmicity: At GRP7 is part of a negative feedback loop through which it influences the oscillations of its own transcript. Biochemical and genetic experiments indicate a mechanism for this autoregulatory circuit: At grp7 gene transcription is rhythmically activated by the circadian clock during the day. The At GPR7 protein accumulates with a certain delay and represses further accumulation of its transcript, presumably at the post–transcriptional level. In this respect, the At GRP7 feedback loop differs from known circadian oscillators in the fruitfly Drosophila and mammals based on oscillating clock proteins that repress transcription of their own genes with a 24 h rhythm. It is proposed that the At GRP7 feedback loop may act within an output pathway from the Arabidopsis clock.


2013 ◽  
Vol 8 (5) ◽  
pp. 924-934 ◽  
Author(s):  
Michael J Layden ◽  
Eric Röttinger ◽  
Francis S Wolenski ◽  
Thomas D Gilmore ◽  
Mark Q Martindale

2004 ◽  
Vol 78 (11) ◽  
pp. 6061-6066 ◽  
Author(s):  
Kristopher M. Curtis ◽  
Boyd Yount ◽  
Amy C. Sims ◽  
Ralph S. Baric

ABSTRACT Coronavirus discontinuous transcription uses a highly conserved sequence (CS) in the joining of leader and body RNAs. Using a full-length infectious construct of transmissable gastroenteritis virus, the present study demonstrates that subgenomic transcription is heavily influenced by upstream flanking sequences and supports a mechanism of transcription attenuation that is regulated in part by a larger domain composed of primarily upstream flanking sequences which select appropriately positioned CS elements for synthesis of subgenomic RNAs.


2009 ◽  
Vol 184 (1) ◽  
pp. 180-192 ◽  
Author(s):  
Artak Ghandilyan ◽  
Luis Barboza ◽  
Sébastien Tisné ◽  
Christine Granier ◽  
Matthieu Reymond ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document