scholarly journals Purification and Mass-Spectrometry Identification of Microtubule-Binding Proteins from Xenopus Egg Extracts

Author(s):  
Vincent Gache ◽  
Patrice Waridel ◽  
Sylvie Luche ◽  
Andrej Shevchenko ◽  
Andrei V. Popov
1999 ◽  
Vol 112 (12) ◽  
pp. 1947-1956 ◽  
Author(s):  
J.R. Sider ◽  
C.A. Mandato ◽  
K.L. Weber ◽  
A.J. Zandy ◽  
D. Beach ◽  
...  

Coordinated interplay of the microtubule and actin cytoskeletons has long been known to be crucial for many cellular processes including cell migration and cytokinesis. However, interactions between these two systems have been difficult to document by conventional approaches, for a variety of technical reasons. Here the distribution of f-actin and microtubules were analyzed in the absence of fixation using Xenopus egg extracts as an in vitro source of microtubules and f-actin, demembranated Xenopus sperm to nucleate microtubule asters, fluorescent phalloidin as a probe for f-actin, and fluorescent tubulin as a probe for microtubules. F-actin consistently colocalized in a lengthwise manner with microtubules of asters subjected to extensive washing in flow chambers. F-actin-microtubule association was heterogenous within a given aster, such that f-actin is most abundant toward the distal (plus) ends of microtubules, and microtubules heavily labeled with f-actin are found in close proximity to microtubules devoid of f-actin. However, this distribution changed over time, in that 5 minute asters had more f-actin in their interiors than did 15 minute asters. Microtubule association with f-actin was correlated with microtubule bending and kinking, while elimination of f-actin resulted in straighter microtubules, indicating that the in vitro interaction between f-actin and microtubules is functionally significant. F-actin was also found to associate in a lengthwise fashion with microtubules in asters centrifuged through 30% sucrose, and microtubules alone (i.e. microtubules not seeded from demembranated sperm) centrifuged through sucrose, indicating that the association cannot be explained by flow-induced trapping and alignment of f-actin by aster microtubules. Further, cosedimentation analysis revealed that microtubule-f-actin association could be reconstituted from microtubules assembled from purified brain tubulin and f-actin assembled from purified muscle actin in the presence, but not the absence, of Xenopus oocyte microtubule binding proteins. The results provide direct evidence for an association between microtubules and f-actin in vitro, indicate that this interaction is mediated by one or more microtubule binding proteins, and suggest that this interaction may be responsible for the mutual regulation of the microtubule and actomyosin cytoskeletons observed in vivo.


1995 ◽  
Vol 6 (2) ◽  
pp. 227-236 ◽  
Author(s):  
J Rosenblatt ◽  
P Peluso ◽  
T J Mitchison

Non-muscle cells contain 15-500 microM actin, a large fraction of which is unpolymerized. Thus, the concentration of unpolymerized actin is well above the critical concentration for polymerization in vitro (0.2 microM). This fraction of actin could be prevented from polymerization by being ADP bound (therefore less favored to polymerize) or by being ATP bound and sequestered by a protein such as thymosin beta 4, or both. We isolated the unpolymerized actin from Xenopus egg extracts using immobilized DNase 1 and assayed the bound nucleotide. High-pressure liquid chromatography analysis showed that the bulk of soluble actin is ATP bound. Analysis of actin-bound nucleotide exchange rates suggested the existence of two pools of unpolymerized actin, one of which exchanges nucleotide relatively rapidly and another that apparently does not exchange. Native gel electrophoresis of Xenopus egg extracts demonstrated that most of the soluble actin exists in complexes with other proteins, one of which might be thymosin beta 4. These results are consistent with actin polymerization being controlled by the sequestration and release of ATP-bound actin, and argue against nucleotide exchange playing a major role in regulating actin polymerization.


1997 ◽  
Vol 16 (2) ◽  
pp. 230-241 ◽  
Author(s):  
E. K. Evans

2012 ◽  
Vol 22 (11) ◽  
pp. 977-988 ◽  
Author(s):  
Torahiko L. Higashi ◽  
Megumi Ikeda ◽  
Hiroshi Tanaka ◽  
Takuro Nakagawa ◽  
Masashige Bando ◽  
...  

2013 ◽  
Vol 203 (5) ◽  
pp. 801-814 ◽  
Author(s):  
Songyu Wang ◽  
Fabian B. Romano ◽  
Christine M. Field ◽  
Tim J. Mitchison ◽  
Tom A. Rapoport

In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microtubule (MT)-organizing center by dynein and is spread by outward extension of ER tubules through their association with plus ends of growing MTs. Fusion of membranes into an ER network is dependent on the guanosine triphosphatase atlastin (ATL). NE assembly requires fusion by both ATL and ER-soluble N-ethyl-maleimide–sensitive factor adaptor protein receptors. In mitotic extracts, the ER converts into a network of sheets connected by ER tubules and loses most of its interactions with MTs. Together, these results indicate that fusion of ER membranes by ATL and interaction of ER with growing MT ends and dynein cooperate to generate distinct ER morphologies during the cell cycle.


1995 ◽  
Vol 5 (11) ◽  
pp. 1270-1279 ◽  
Author(s):  
Mark A. Madine ◽  
Chong-Yee Khoo ◽  
Anthony D. Mills ◽  
Christine Musahl ◽  
Ronald A. Laskey

Sign in / Sign up

Export Citation Format

Share Document