scholarly journals Direct observation of microtubule-f-actin interaction in cell free lysates

1999 ◽  
Vol 112 (12) ◽  
pp. 1947-1956 ◽  
Author(s):  
J.R. Sider ◽  
C.A. Mandato ◽  
K.L. Weber ◽  
A.J. Zandy ◽  
D. Beach ◽  
...  

Coordinated interplay of the microtubule and actin cytoskeletons has long been known to be crucial for many cellular processes including cell migration and cytokinesis. However, interactions between these two systems have been difficult to document by conventional approaches, for a variety of technical reasons. Here the distribution of f-actin and microtubules were analyzed in the absence of fixation using Xenopus egg extracts as an in vitro source of microtubules and f-actin, demembranated Xenopus sperm to nucleate microtubule asters, fluorescent phalloidin as a probe for f-actin, and fluorescent tubulin as a probe for microtubules. F-actin consistently colocalized in a lengthwise manner with microtubules of asters subjected to extensive washing in flow chambers. F-actin-microtubule association was heterogenous within a given aster, such that f-actin is most abundant toward the distal (plus) ends of microtubules, and microtubules heavily labeled with f-actin are found in close proximity to microtubules devoid of f-actin. However, this distribution changed over time, in that 5 minute asters had more f-actin in their interiors than did 15 minute asters. Microtubule association with f-actin was correlated with microtubule bending and kinking, while elimination of f-actin resulted in straighter microtubules, indicating that the in vitro interaction between f-actin and microtubules is functionally significant. F-actin was also found to associate in a lengthwise fashion with microtubules in asters centrifuged through 30% sucrose, and microtubules alone (i.e. microtubules not seeded from demembranated sperm) centrifuged through sucrose, indicating that the association cannot be explained by flow-induced trapping and alignment of f-actin by aster microtubules. Further, cosedimentation analysis revealed that microtubule-f-actin association could be reconstituted from microtubules assembled from purified brain tubulin and f-actin assembled from purified muscle actin in the presence, but not the absence, of Xenopus oocyte microtubule binding proteins. The results provide direct evidence for an association between microtubules and f-actin in vitro, indicate that this interaction is mediated by one or more microtubule binding proteins, and suggest that this interaction may be responsible for the mutual regulation of the microtubule and actomyosin cytoskeletons observed in vivo.

2000 ◽  
Vol 113 (9) ◽  
pp. 1623-1633 ◽  
Author(s):  
K.P. McNally ◽  
O.A. Bazirgan ◽  
F.J. McNally

The assembly and function of the mitotic spindle requires the activity of a number of microtubule-binding proteins. Some microtubule-binding proteins bind microtubules in vitro but do not co-localize with microtubules in interphase cells. Instead these proteins associate with specific subregions of the mitotic spindle. Katanin, a heterodimeric microtubule-severing ATPase, is found localized at mitotic spindle poles. In this paper we demonstrate that human p60 katanin and the C-terminal domain of human p80 katanin both bind microtubules in vitro. Association of these two proteins results in an increased microtubule affinity and increased microtubule-severing activity in vitro. Association of these subunits in transfected HeLa cells increases microtubule disassembly activity and targeting to spindle poles. The N-terminal WD40 domain of p80 katanin acts as a negative regulator of microtubule disassembly activity and is also required for spindle pole localization, possibly through interactions with another spindle-pole protein. These results support a model in which katanin is targeted to spindle poles through a combination of direct microtubule binding by the p60 subunit and through interactions between the WD40 domain and an unknown protein. We propose that both domains of p80 are essential in precisely regulating katanin's activity in vivo.


1995 ◽  
Vol 6 (2) ◽  
pp. 215-226 ◽  
Author(s):  
T Izumi ◽  
J L Maller

The M-phase inducer, Cdc25C, is a dual-specificity phosphatase that directly phosphorylates and activates the cyclin B/Cdc2 kinase complex, leading to initiation of mitosis. Cdc25 itself is activated at the G2/M transition by phosphorylation on serine and threonine residues. Previously, it was demonstrated that Cdc2 kinase is capable of phosphorylating and activating Cdc25, suggesting the existence of a positive feedback loop. In the present study, kinases other than Cdc2 that can phosphorylate and activate Cdc25 were investigated. Cdc25 was found to be phosphorylated and activated by cyclin A/Cdk2 and cyclin E/Cdk2 in vitro. However, in interphase Xenopus egg extracts with no detectable Cdc2 and Cdk2, treatment with the phosphatase inhibitor microcystin activated a distinct kinase that could phosphorylate and activate Cdc25. Microcystin also induced other mitotic phenomena such as chromosome condensation and nuclear envelope breakdown in extracts containing less than 5% of the mitotic level of Cdc2 kinase activity. These findings implicate a kinase other than Cdc2 and Cdk2 that may initially activate Cdc25 in vivo and suggest that this kinase may also phosphorylate M-phase substrates even in the absence of Cdc2 kinase.


1990 ◽  
Vol 110 (5) ◽  
pp. 1623-1633 ◽  
Author(s):  
J E Rickard ◽  
T E Kreis

A protein of Mr 170,000 (170K protein) has been identified in HeLa cells, using an antiserum raised against HeLa nucleotide-sensitive microtubule-binding proteins. Affinity-purified antibodies specific for this 170K polypeptide were used for its characterization. In vitro sedimentation of the 170K protein with taxol microtubules polymerized from HeLa high-speed supernatant is enhanced in the presence of an ATP depleting system, but unaffected by the non-hydrolyzable ATP analogue AMP-PNP. In addition, it can be eluted from taxol microtubules by ATP or GTP, as well as NaCl. Thus it shows microtubule-binding characteristics distinct from those of the previously described classes of nucleotide-sensitive microtubule-binding proteins, the motor proteins kinesin and cytoplasmic dynein, homologues of which are also present in HeLa cells. The 170K protein sediments on sucrose gradients at approximately 6S, separate from kinesin (9.5S) and cytoplasmic dynein (20S), further indicating that it is not associated with these motor proteins. Immunofluorescence localization of the 170K protein shows a patchy distribution in interphase HeLa cells, often organized into linear arrays that correlate with microtubules. However, not all microtubules are labeled, and there is a significant accumulation of antigen at the peripheral ends of microtubules. In mitotic cells, 170K labeling is found in the spindle, but there is also dotty labeling in the cytoplasm. After depolymerization of microtubules by nocodazole, the staining pattern is also patchy but not organized in linear arrays, suggesting that the protein may be able to associate with other intracellular structures as well as microtubules. In vinblastine-treated cells, there is strong labeling of tubulin paracrystals, and random microtubules induced in vivo by taxol are also labeled by the antibodies. These immunofluorescence labeling patterns are stable to extraction of cells with Triton X-100 before fixation, further suggesting an association of the protein with cytoplasmic structures. In vivo, therefore, the 170K protein appears to be associated with a subset of microtubules at discrete sites. Its in vitro behavior suggests that it belongs to a novel class of nucleotide-sensitive microtubule-binding proteins.


1996 ◽  
Vol 16 (9) ◽  
pp. 4673-4682 ◽  
Author(s):  
J Chen ◽  
P Saha ◽  
S Kornbluth ◽  
B D Dynlacht ◽  
A Dutta

The cyclin-dependent kinase (Cdk) inhibitor p21 is induced by the tumor suppressor p53 and is required for the G1-S block in cells with DNA damage. We report that there are two copies of a cyclin-binding motif in p21, Cy1 and Cy2, which interact with the cyclins independently of Cdk2. The cyclin-binding motifs of p21 are required for optimum inhibition of cyclin-Cdk kinases in vitro and for growth suppression in vivo. Peptides containing only the Cy1 or Cy2 motif partially inhibit cyclin-Cdk kinase activity in vitro and DNA replication in Xenopus egg extracts. A monoclonal antibody which recognizes the Cy1 site of p21 specifically disrupts the association of p21 with cyclin E-Cdk2 and with cyclin D1-Cdk4 in cell extracts. Taken together, these observations suggest that the cyclin-binding motif of p21 is important for kinase inhibition and for formation of p21-cyclin-Cdk complexes in the cell. Finally, we show that the cyclin-Cdk complex is partially active if associated with only the cyclin-binding motif of p21, providing an explanation for how p21 is found associated with active cyclin-Cdk complexes in vivo. The Cy sequences may be general motifs used by Cdk inhibitors or substrates to interact with the cyclin in a cyclin-Cdk complex.


2001 ◽  
Vol 12 (2) ◽  
pp. 437-448 ◽  
Author(s):  
Thomas Küntziger ◽  
Olivier Gavet ◽  
Valérie Manceau ◽  
André Sobel ◽  
Michel Bornens

Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of “mitotic chromatin.” Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.


1992 ◽  
Vol 116 (6) ◽  
pp. 1431-1442 ◽  
Author(s):  
B Buendia ◽  
G Draetta ◽  
E Karsenti

Isolated centrosomes nucleate microtubules when incubated in pure tubulin solutions well below the critical concentration for spontaneous polymer assembly (approximately 15 microM instead of 60 microM). Treatment with urea (2-3 M) does not severely damage the centriole cylinders but inactivates their ability to nucleate microtubules even at high tubulin concentrations. Here we show that centrosomes inactivated by urea are functionally complemented in frog egg extracts. Centrosomes can then be reisolated on sucrose gradients and assayed in different concentrations of pure tubulin to quantify their nucleating activity. We show that the material that complements centrosomes is stored in a soluble form in the egg. Each frog egg contains enough material to complement greater than 6,000 urea-inactivated centrosomes. The material is heat inactivated above 56 degrees C. One can use this in vitro system to study how the microtubule nucleating activity of centrosomes is regulated. Native centrosomes require approximately 15 microM tubulin to begin nucleating microtubules, whereas centrosomes complemented in interphase extracts begin nucleating microtubules around 7-8 microM tubulin. Therefore, the critical tubulin concentrations for polymer assembly off native centrosomes is higher than that observed for the centrosomes first denatured and then complemented in egg extracts. In vivo, the microtubule nucleating activity of centrosomes seems to be regulated by phosphorylation at the onset of mitosis (Centonze, V. E., and G. G. Borisy. 1990. J. Cell Sci. 95:405-411). Since cyclins are major regulators of mitosis, we tested the effect of adding bacterially produced cyclins to interphase egg extracts. Both cyclin A and B activate an H1 kinase in the extracts. Cyclin A-associated kinase causes an increase in the microtubule nucleating activity of centrosomes complemented in the extract but cyclin B does not. The critical tubulin concentration for polymer assembly off centrosomes complemented in cyclin A-treated extracts is similar to that observed for centrosomes complemented in interphase extracts. However, centrosomes complemented in cyclin A treated extracts nucleate much more microtubules at high tubulin concentration. We define this as the "capacity" of centrosomes to nucleate microtubules. It seems that the microtubule nucleating activity of centrosomes can be defined by two distinct parameters: (a) the critical tubulin concentration at which they begin to nucleate microtubules and (b) their capacity to nucleate microtubules at high tubulin concentrations, the latter being modulated by phosphorylation.


2013 ◽  
Vol 24 (22) ◽  
pp. 3522-3533 ◽  
Author(s):  
Shusheng Wang ◽  
Stephanie A. Ketcham ◽  
Arne Schön ◽  
Benjamin Goodman ◽  
Yueju Wang ◽  
...  

Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.


2003 ◽  
Vol 161 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Feng Li ◽  
Jianhua Chen ◽  
Eduardo Solessio ◽  
David M. Gilbert

We have examined the distribution of early replicating origins on stretched DNA fibers when nuclei from CHO cells synchronized at different times during G1 phase initiate DNA replication in Xenopus egg extracts. Origins were differentially labeled in vivo versus in vitro to allow a comparison of their relative positions and spacing. With nuclei isolated in the first hour of G1 phase, in vitro origins were distributed throughout a larger number of DNA fibers and did not coincide with in vivo origins. With nuclei isolated 1 h later, a similar total number of in vitro origins were clustered within a smaller number of DNA fibers but still did not coincide with in vivo origins. However, with nuclei isolated later in G1 phase, the positions of many in vitro origins coincided with in vivo origin sites without further change in origin number or density. These results highlight two distinct G1 steps that establish a spatial and temporal program for replication.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Edward X. Han ◽  
Hong Qian ◽  
Bo Jiang ◽  
Maria Figetakis ◽  
Natalia Kosyakova ◽  
...  

AbstractA significant barrier to implementation of cell-based therapies is providing adequate vascularization to provide oxygen and nutrients. Here we describe an approach for cell transplantation termed the Therapeutic Vascular Conduit (TVC), which uses an acellular vessel as a scaffold for a hydrogel sheath containing cells designed to secrete a therapeutic protein. The TVC can be directly anastomosed as a vascular graft. Modeling supports the concept that the TVC allows oxygenated blood to flow in close proximity to the transplanted cells to prevent hypoxia. As a proof-of-principle study, we used erythropoietin (EPO) as a model therapeutic protein. If implanted as an arteriovenous vascular graft, such a construct could serve a dual role as an EPO delivery platform and hemodialysis access for patients with end-stage renal disease. When implanted into nude rats, TVCs containing EPO-secreting fibroblasts were able to increase serum EPO and hemoglobin levels for up to 4 weeks. However, constitutive EPO expression resulted in macrophage infiltration and luminal obstruction of the TVC, thus limiting longer-term efficacy. Follow-up in vitro studies support the hypothesis that EPO also functions to recruit macrophages. The TVC is a promising approach to cell-based therapeutic delivery that has the potential to overcome the oxygenation barrier to large-scale cellular implantation and could thus be used for a myriad of clinical disorders. However, a complete understanding of the biological effects of the selected therapeutic is absolutely essential.


Sign in / Sign up

Export Citation Format

Share Document